LlamaContextAttentionLayer.cc 19.3 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2021-2023, NVIDIA CORPORATION.  All rights reserved.
 * Copyright (c) 2021, NAVER Corp.  Authored by CLOVA.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
Li Zhang's avatar
Li Zhang committed
18
19

// Modified from
lvhan028's avatar
lvhan028 committed
20
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/layers/attention_layers/GptContextAttentionLayer.cc
Li Zhang's avatar
Li Zhang committed
21

lvhan028's avatar
lvhan028 committed
22
23
24
#include "src/turbomind/models/llama/LlamaContextAttentionLayer.h"
#include "src/turbomind/kernels/bert_preprocess_kernels.h"
#include "src/turbomind/kernels/unfused_attention_kernels.h"
Chen Xin's avatar
Chen Xin committed
25
#include "src/turbomind/macro.h"
lvhan028's avatar
lvhan028 committed
26
27
28
29
30
#include "src/turbomind/models/llama/LlamaNcclGuard.h"
#include "src/turbomind/models/llama/llama_kernels.h"
#include "src/turbomind/models/llama/llama_utils.h"
#include "src/turbomind/utils/Tensor.h"
#include "src/turbomind/utils/cuda_utils.h"
31
#include "src/turbomind/utils/logger.h"
Li Zhang's avatar
Li Zhang committed
32

lvhan028's avatar
lvhan028 committed
33
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
34
35
36
37
38
39
40

template<typename T>
void LlamaContextAttentionLayer<T>::allocateBuffer(size_t batch_size,
                                                   size_t num_token,
                                                   size_t max_q_len,
                                                   size_t max_k_len)
{
lvhan028's avatar
lvhan028 committed
41
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
42

43
44
    const int local_q_kv_head_num = local_head_num_ + 2 * local_kv_head_num_;

Li Zhang's avatar
Li Zhang committed
45
    // no padding
46
    qkv_buf_ = (T*)allocator_->reMalloc(qkv_buf_, sizeof(T) * num_token * local_q_kv_head_num * size_per_head_, true);
Li Zhang's avatar
Li Zhang committed
47
48

    // padding is rebuilt for q/k/v_buf_2_
49
50
51
52
53
    // [qH + 2kvH, B, S, D]
    q_buf_2_ = (T*)allocator_->reMalloc(
        q_buf_2_, sizeof(T) * local_q_kv_head_num * batch_size * max_q_len * size_per_head_, true);
    k_buf_2_ = q_buf_2_ + local_head_num_ * batch_size * max_q_len * size_per_head_;
    v_buf_2_ = k_buf_2_ + local_kv_head_num_ * batch_size * max_q_len * size_per_head_;
Li Zhang's avatar
Li Zhang committed
54
55
56
57
58
59
60
61

    if (use_fmha_) {
        FlashAttentionOp<T> flash_attention(batch_size, local_head_num_, max_k_len, max_q_len, size_per_head_);
        if (flash_attention.get_workspace_size() > 0) {
            qk_buf_float_ = (float*)allocator_->reMalloc(qk_buf_float_, flash_attention.get_workspace_size(), true);
        }
    }
    else {
62
        // kv heads are repeated for unfused attention
Li Zhang's avatar
Li Zhang committed
63
64
65
66
67
68
69
70
        k_cache_buf_ = (T*)allocator_->reMalloc(
            k_cache_buf_, 2 * sizeof(T) * batch_size * local_head_num_ * max_k_len * size_per_head_, true);
        v_cache_buf_ = k_cache_buf_ + batch_size * local_head_num_ * max_k_len * size_per_head_;

        qk_buf_ =
            (T*)allocator_->reMalloc(qk_buf_, sizeof(T) * batch_size * local_head_num_ * max_q_len * max_k_len, true);

        // qkv_buf_2_ has padding
71
72
        qkv_buf_2_ = (T*)allocator_->reMalloc(
            qkv_buf_2_, sizeof(T) * batch_size * max_q_len * local_head_num_ * size_per_head_, true);
Li Zhang's avatar
Li Zhang committed
73
74
75
    }

    // qkv_buf_3_ padding is removed
76
    qkv_buf_3_ = (T*)allocator_->reMalloc(qkv_buf_3_, sizeof(T) * num_token * local_head_num_ * size_per_head_, true);
Li Zhang's avatar
Li Zhang committed
77
78
79
80
81
82
83
84

    is_allocate_buffer_ = true;
}

template<typename T>
void LlamaContextAttentionLayer<T>::freeBuffer()
{
    if (is_allocate_buffer_) {
lvhan028's avatar
lvhan028 committed
85
        TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

        allocator_->free((void**)(&qkv_buf_));
        allocator_->free((void**)(&q_buf_2_));
        if (use_fmha_) {
            allocator_->free((void**)&qk_buf_float_);
        }
        else {
            allocator_->free((void**)(&k_cache_buf_));
            allocator_->free((void**)(&qk_buf_));
            allocator_->free((void**)(&qkv_buf_2_));
        }
        allocator_->free((void**)(&qkv_buf_3_));

        is_allocate_buffer_ = false;
    }
}

template<typename T>
inline void LlamaContextAttentionLayer<T>::forward(TensorMap*                     output_tensors,
                                                   const TensorMap*               input_tensors,
                                                   const LlamaAttentionWeight<T>* weights)
{
lvhan028's avatar
lvhan028 committed
108
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

    /**
     * input_tensors:
     *   \param input_query [token_num, hidden_dim]
     *   \param attention_mask [batch_size, 1, max_q_len, max_kv_len]
     *   \param padding_offset [token_num], int
     *   \param input_lengths [batch_size], int
     *   \param history_lengths [batch_size], int
     *   \param context_lengths [batch_size], int
     *   \param cu_seqlens [batch_size+1], int
     *   \param max_seq_len [1], int on cpu
     *   \param is_final_layer [1], bool on cpu
     *   \param layer_id [1], int on cpu
     *
     * output_tensors:
     *   \param hidden_features [token_num, hidden_dim]
     *   \param key_cache [batch_size], uint64
     *   \param value_cache [batch_size], uint64
     */

    /////////////////////////////////////////////
    /// parse inputs
    const int batch_size = input_tensors->at("attention_mask").shape[0];
    const int max_q_len  = input_tensors->at("attention_mask").shape[2];
    const int max_k_len  = input_tensors->at("attention_mask").shape[3];
    const int layer_id   = input_tensors->getVal<int>("layer_id");

    const int num_token = input_tensors->at("input_query").shape[0];

    const int max_seq_len = input_tensors->at("max_seq_len").getVal<int>();

    T* attention_out   = output_tensors->at("hidden_features").getPtr<T>();
    T* attention_input = input_tensors->at("input_query").getPtr<T>();
    T* attention_mask  = input_tensors->at("attention_mask").getPtr<T>();

    const auto input_length   = input_tensors->at("input_lengths").getPtr<const int>();
    const auto history_length = input_tensors->at("history_lengths").getPtr<const int>();
    const auto context_length = input_tensors->at("context_lengths").getPtr<const int>();
    int*       cu_seqlens     = input_tensors->at("cu_seqlens").getPtr<int>();

    const auto padding_offset = input_tensors->at("padding_offset").getPtr<int>();

    /////////////////////////////////////////////
    /// allocate buffers
    allocateBuffer(batch_size, num_token, max_q_len, max_k_len);

    //////////////////////////////////////////////
    /// qkv gemm
    // [token_num, hidden_dim] -> [token_num, 3, local_hidden_dim]
    linear_.forward(qkv_buf_, attention_input, num_token, weights->qkv);

    //////////////////////////////////////////////
    /// transpose qkv & apply rotary embedding & rebuild padding
162
    /// qkv [B, s, H + 2kvH, D] -> (q [B, H, s, D], k [B, kvH, s, D], v [B, kvH, s, D])
Li Zhang's avatar
Li Zhang committed
163
164
165
166
    invokeAddFusedQKVBiasTranspose(q_buf_2_,
                                   k_buf_2_,
                                   v_buf_2_,
                                   qkv_buf_,
Li Zhang's avatar
Li Zhang committed
167
168
169
                                   weights->qkv.bias,
                                   padding_offset,  // padding_offset,
                                   history_length,  // used for applying rotary embedding
170
                                   input_length,
Li Zhang's avatar
Li Zhang committed
171
172
173
174
                                   batch_size,
                                   max_q_len,  // seq_len
                                   num_token,  // batch_size * seq_len
                                   local_head_num_,
175
                                   local_kv_head_num_,
Li Zhang's avatar
Li Zhang committed
176
                                   size_per_head_,
177
                                   params_.rotray_embedding_dim,
Lyu Han's avatar
Lyu Han committed
178
                                   params_.rotary_embedding_base,
179
180
181
                                   params_.max_position_embeddings,
                                   params_.use_dynamic_ntk,
                                   params_.use_logn_attn,
Li Zhang's avatar
Li Zhang committed
182
183
184
                                   stream_);
    sync_check_cuda_error();

185
    const size_t layer_offset = layer_id * local_kv_head_num_ * max_seq_len * size_per_head_;
Li Zhang's avatar
Li Zhang committed
186
187
188
189
190
191

    auto k_cache_ptrs = output_tensors->getPtr<T*>("key_cache");
    auto v_cache_ptrs = output_tensors->getPtr<T*>("value_cache");
    //////////////////////////////////////////////////////////
    /// insert the k/v computed from inputs into k/v cache
    /// transpose kv -> kv cache
192
193
194
    // put k/v_buf from shape [B, kvH, s, D] to
    // k_buf_2 [B, kvH, s, D] -> key_cache [B, kvH, S[t:t+s], D/x, x]
    // v_buf_2 [B, kvH, s, D] -> val_cache [B, kvH, S[t:t+s], D/x, x]
Li Zhang's avatar
Li Zhang committed
195
196
197
198
199
200
201
202
203
204
205
    invokeExtendKVCache(k_cache_ptrs,
                        v_cache_ptrs,
                        layer_offset,
                        k_buf_2_,
                        v_buf_2_,
                        batch_size,
                        input_length,
                        max_q_len,
                        history_length,
                        max_seq_len,
                        size_per_head_,
206
                        local_kv_head_num_,
207
208
209
210
211
                        stream_,
                        quant_policy_,
                        weights->past_kv_scale.data());

    sync_check_cuda_error();
Li Zhang's avatar
Li Zhang committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    if (use_fmha_) {
        fusedMultiHeadAttention(k_cache_ptrs,
                                v_cache_ptrs,
                                layer_offset,
                                attention_mask,
                                cu_seqlens,
                                batch_size,
                                max_q_len,
                                max_k_len,
                                max_seq_len);
    }
    else {
        unfusedMultiHeadAttention(k_cache_ptrs,
                                  v_cache_ptrs,
                                  layer_offset,
                                  attention_mask,
                                  padding_offset,
                                  context_length,
                                  batch_size,
                                  num_token,
                                  max_q_len,
                                  max_k_len,
234
235
236
                                  max_seq_len,
                                  quant_policy_,
                                  weights->past_kv_scale.data());
Li Zhang's avatar
Li Zhang committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    }

    //////////////////////////////////////////////
    /// output gemm <Bs,HD> -> <Bs,HD>
    linear_.forward(attention_out, qkv_buf_3_, num_token, weights->output);

    if (tensor_para_.world_size_ > 1) {
        NcclGuard nccl_guard(tensor_para_, stream_);
        ftNcclAllReduceSum(attention_out, attention_out, num_token * hidden_units_, tensor_para_, stream_);
        sync_check_cuda_error();
    }

    if (is_free_buffer_after_forward_ == true) {
        freeBuffer();
    }
    sync_check_cuda_error();
}

template<typename T>
void LlamaContextAttentionLayer<T>::fusedMultiHeadAttention(T**    key_cache_ptrs,
                                                            T**    val_cache_ptrs,
                                                            size_t cache_layer_offset,
                                                            T*     attention_mask,
                                                            int*   cu_seqlens,
                                                            int    batch_size,
                                                            int    max_q_len,
                                                            int    max_k_len,
                                                            int    max_seq_len)
{
    //////////////////////////////////////////////
    // flash attention
q.yao's avatar
q.yao committed
268
    // flash attention 2 only support half inputs
Li Zhang's avatar
Li Zhang committed
269
270
    using AttentionOp = FlashAttentionOp<T>;
    using Layout      = typename AttentionOp::AttentionLayout;
Chen Xin's avatar
Chen Xin committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    Layout layout_q{
        int(local_head_num_ * max_q_len * size_per_head_), int(size_per_head_), int(max_q_len * size_per_head_)};
    Layout layout_k{int(local_head_num_ * max_seq_len * size_per_head_),
                    int(size_per_head_),
                    int(max_seq_len * size_per_head_),
                    false,
                    int(cache_layer_offset),
                    key_cache_ptrs};
    Layout layout_v{int(local_head_num_ * max_seq_len * size_per_head_),
                    int(size_per_head_),
                    int(max_seq_len * size_per_head_),
                    false,
                    int(cache_layer_offset),
                    val_cache_ptrs};
Li Zhang's avatar
Li Zhang committed
285
    Layout layout_o{
Chen Xin's avatar
Chen Xin committed
286
287
288
289
        int(local_head_num_ * max_q_len * size_per_head_),
        int(local_head_num_ * size_per_head_),
        int(size_per_head_),
        true,
Li Zhang's avatar
Li Zhang committed
290
    };
q.yao's avatar
q.yao committed
291
292
    size_t                       group_size = size_t(local_head_num_ / local_kv_head_num_);
    AttentionOp                  flash_attention(batch_size, local_head_num_, max_k_len, max_q_len, size_per_head_);
Chen Xin's avatar
Chen Xin committed
293
294
295
296
297
298
299
300
301
302
303
304
305
    typename AttentionOp::Params attn_params{qkv_buf_3_,
                                             q_buf_2_,
                                             k_cache_buf_,
                                             v_cache_buf_,
                                             attention_mask,
                                             qk_buf_float_,
                                             cu_seqlens,
                                             nullptr,
                                             group_size,
                                             layout_q,
                                             layout_k,
                                             layout_v,
                                             layout_o};
Li Zhang's avatar
Li Zhang committed
306
307
308
309
310
311

    //
    flash_attention(attn_params, stream_);
}

template<typename T>
AllentDan's avatar
AllentDan committed
312
313
314
315
316
317
318
319
320
321
322
323
324
void LlamaContextAttentionLayer<T>::unfusedMultiHeadAttention(T**          key_cache_ptrs,
                                                              T**          val_cache_ptrs,
                                                              size_t       cache_layer_offset,
                                                              const T*     attention_mask,
                                                              const int*   padding_offset,
                                                              const int*   context_length,
                                                              int          batch_size,
                                                              int          num_token,
                                                              int          max_q_len,
                                                              int          max_k_len,
                                                              int          max_seq_len,
                                                              int          quant,
                                                              const float* kv_scale)
Li Zhang's avatar
Li Zhang committed
325
{
326
327
    // key_cache [B, kvH, S[:t+s], D/x, x] -> [B, qH, t+s, D]
    // val_cache [B, kvH, S[:t+s], D/x, x] -> [B, qH, t+s, D]
Li Zhang's avatar
Li Zhang committed
328
329
330
331
332
333
334
335
336
337
338
    invokeTransposeKVCache(k_cache_buf_,
                           v_cache_buf_,
                           (const T**)key_cache_ptrs,
                           (const T**)val_cache_ptrs,
                           cache_layer_offset,
                           batch_size,
                           context_length,  // history_len + input_len = context_len
                           max_k_len,
                           max_seq_len,
                           size_per_head_,
                           local_head_num_,
339
                           head_n_rep_,
340
341
342
                           stream_,
                           quant,
                           kv_scale);
Li Zhang's avatar
Li Zhang committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    sync_check_cuda_error();

    const T qk_scale = static_cast<T>(1.f / sqrtf(size_per_head_ * 1.f));

    //////////////////////////////////////////////
    /// Q*K batch gemm
    /// -> [B, H, s, t + s]
    cublas_wrapper_->stridedBatchedGemm(CUBLAS_OP_T,
                                        CUBLAS_OP_N,
                                        max_k_len,                      // m
                                        max_q_len,                      // n
                                        size_per_head_,                 // k
                                        k_cache_buf_,                   // A
                                        size_per_head_,                 // lda
                                        max_k_len * size_per_head_,     // strideA
                                        q_buf_2_,                       // B
                                        size_per_head_,                 // ldb
                                        max_q_len * size_per_head_,     // strideB
                                        qk_buf_,                        // C
                                        max_k_len,                      // ldc
                                        max_q_len * max_k_len,          // strideC
                                        batch_size * local_head_num_);  // batchCount

    //////////////////////////////////////////////
    /// ! masked softmax (kernel asserts k_length <= 4096)
    MaskedSoftmaxParam<T, T> param{};
    param.attention_score    = qk_buf_;
    param.qk                 = qk_buf_;
    param.attention_mask     = attention_mask;
    param.batch_size         = batch_size;
    param.q_length           = max_q_len;
    param.k_length           = max_k_len;
    param.num_heads          = local_head_num_;
    param.qk_scale           = qk_scale;
    param.linear_bias_slopes = nullptr;
    invokeMaskedSoftmax(param, stream_);
    sync_check_cuda_error();

    //////////////////////////////////////////////
    /// softmax(QK)*V batch gemm
    // -> [B, H, S, D]
    cublas_wrapper_->stridedBatchedGemm(CUBLAS_OP_N,
                                        CUBLAS_OP_N,
                                        size_per_head_,                 // m
                                        max_q_len,                      // n
                                        max_k_len,                      // k
                                        v_cache_buf_,                   // A
                                        size_per_head_,                 // lda
                                        max_k_len * size_per_head_,     // strideA,
                                        qk_buf_,                        // B
                                        max_k_len,                      // ldb
                                        max_k_len * max_q_len,          // strideB
                                        qkv_buf_2_,                     // C
                                        size_per_head_,                 // ldc,
                                        max_q_len * size_per_head_,     // strideC
                                        batch_size * local_head_num_);  // batchCount

    //////////////////////////////////////////////
    /// transpose <B,h,s,D> -> <B,s,h,D>
    invokeTransposeAttentionOutRemovePadding(qkv_buf_2_,
                                             qkv_buf_3_,
                                             num_token,
                                             batch_size,
                                             max_q_len,
                                             local_head_num_,
                                             size_per_head_,
                                             padding_offset,
                                             nullptr,
                                             0,
                                             stream_);
    sync_check_cuda_error();
}

template class LlamaContextAttentionLayer<float>;
template class LlamaContextAttentionLayer<half>;

lvhan028's avatar
lvhan028 committed
419
}  // namespace turbomind