profile_restful_api.py 5.62 KB
Newer Older
AllentDan's avatar
AllentDan committed
1
2
3
4
5
6
7
8
import json
import multiprocessing as mp
import random
import time

import fire
import numpy as np

9
from lmdeploy.serve.openai.api_client import get_streaming_response
10
from lmdeploy.tokenizer import Tokenizer
AllentDan's avatar
AllentDan committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from lmdeploy.utils import get_logger


def infer(server_addr: str, session_id: int, req_queue: mp.Queue,
          res_que: mp.Queue):
    stats = []
    while not req_queue.empty():
        prompt, input_seqlen, output_seqlen = req_queue.get()
        get_logger('profile_restful_api').info(
            f'request info: session {session_id}, '
            f'input_seqlen {input_seqlen}, output_seqlen {output_seqlen}')
        timestamps = []
        tokens = []
        start = time.perf_counter()
25
        for res, token, status in get_streaming_response(
AllentDan's avatar
AllentDan committed
26
27
28
29
                prompt,
                server_addr,
                session_id,
                request_output_len=output_seqlen,
30
                interactive_mode=False):
AllentDan's avatar
AllentDan committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
            timestamps.append(time.perf_counter())
            tokens.append(token)

        first_token_latency = timestamps[1] - start
        token_latency = timestamps[-1] - timestamps[0]
        token = tokens[-1] - tokens[0]
        stats.append([first_token_latency, token, token_latency])
    res_que.put((session_id, stats))


def warmup(server_addr: str,
           concurrency: int,
           output_seqlen: int,
           warmup_round: int = 1):
    print('start to warmup ...')

    def _infer(server_addr, session_id):
        for _ in range(warmup_round):
49
50
51
52
53
            for _ in get_streaming_response('',
                                            server_addr,
                                            session_id,
                                            request_output_len=output_seqlen,
                                            interactive_mode=False):
AllentDan's avatar
AllentDan committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
                continue

    _start = time.perf_counter()
    procs = []
    for i in range(concurrency):
        proc = mp.Process(target=_infer, args=(server_addr, i + 1))
        procs.append(proc)
        proc.start()
    for proc in procs:
        proc.join()
    _end = time.perf_counter()
    print(f'end warmup, elapsed time: {round(_end - _start, 2)} s')


def read_dataset(tokenizer_path: str, dataset_path: str, samples: int,
                 session_len: int):
    start = time.perf_counter()
    with open(dataset_path) as f:
        dataset = json.load(f)
        dataset = [data for data in dataset if len(data['conversations']) >= 2]
        # Only keep the first two turns of each conversation.
        dataset = [(data['conversations'][0]['value'],
                    data['conversations'][1]['value']) for data in dataset]
        prompts = [prompt for prompt, _ in dataset]
        completions = [completion for _, completion in dataset]
        print(f'elapsed time for read data: '
              f'{round(time.perf_counter() - start, 2)} s')

    start = time.perf_counter()
    tokenizer = Tokenizer(tokenizer_path)
84
85
86
87
    prompts_token_lens = [len(tokenizer.encode(prompt)) for prompt in prompts]
    completions_token_lens = [
        len(tokenizer.encode(prompt)) for prompt in completions
    ]
AllentDan's avatar
AllentDan committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    print(f'elapsed time for tokenization: '
          f'{round(time.perf_counter() - start, 2)} s')

    start = time.perf_counter()
    filtered_dataset = []
    for (prompt, _), input_len, output_len in zip(dataset, prompts_token_lens,
                                                  completions_token_lens):
        if input_len + output_len > session_len:
            # ignore too long conversation
            continue
        filtered_dataset.append([prompt, input_len, output_len])

    if samples > 0:
        filtered_dataset = random.sample(filtered_dataset, samples)

    que = mp.Queue()
    for data in filtered_dataset:
        que.put(data)
    print(f'elapsed time for filtering: '
          f'{round(time.perf_counter() - start, 2)} s')
    return que, len(filtered_dataset)


def main(server_addr: str,
         tokenizer_path: str,
         dataset_path: str,
         concurrency: int = 1,
         session_len: int = 2048,
         samples: int = 1000):
117
    api_url = server_addr + '/v1/chat/interactive'
AllentDan's avatar
AllentDan committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    warmup(api_url, concurrency, session_len - 1)
    req_queue, n_req = read_dataset(tokenizer_path, dataset_path, samples,
                                    session_len)
    res_que = mp.Queue()
    procs = []
    _start = time.perf_counter()
    for i in range(concurrency):
        proc = mp.Process(target=infer,
                          args=(api_url, i + 1, req_queue, res_que))
        procs.append(proc)
        proc.start()
    for proc in procs:
        proc.join()
    _end = time.perf_counter()
    elapsed_time = _end - _start

    stats = []
    while not res_que.empty():
        session_id, _stats = res_que.get()
        print(f'\n{"-" * 50}\n'
              f'session {session_id} stats: \n{_stats}\n{"-" * 50}\n')
        stats.append(np.array(_stats))

    stats = np.concatenate(stats).reshape(-1, 3)

    first_token_latency_min = np.min(stats[:, 0], axis=0)
    first_token_latency_max = np.max(stats[:, 0], axis=0)
    first_token_latency_ave = np.mean(stats[:, 0], axis=0)
    token_throughput = np.sum(stats[:, 1], axis=0) / elapsed_time
    req_throughput = n_req / elapsed_time

    print(f'\n{"-" * 50}\nconcurrency: {concurrency}\n'
          f'elapsed_time: {elapsed_time:.2f}s\n'
          f'first_token latency(min, max, ave): '
          f'{first_token_latency_min:.2f}s, {first_token_latency_max:.2f}s, '
          f'{first_token_latency_ave:.2f}s\n'
          f'token throughput: {token_throughput:.2f} token/s\n'
          f'req throughput: {req_throughput:.2f} req/s\n'
          f'{"-" * 50}\n')


if __name__ == '__main__':
    fire.Fire(main)