test_sampling.cu 58.6 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
#include <algorithm>  // std::min, std::max
#include <iostream>   // snprintf
#include <math.h>     // expf, log
#include <stdlib.h>   // rand
#include <string>     // std::string
#include <vector>     // std::vector

#include <cublasLt.h>
#include <cublas_v2.h>
#include <cuda_runtime.h>

lvhan028's avatar
lvhan028 committed
12
13
14
15
16
17
18
#include "src/turbomind/kernels/sampling_topk_kernels.h"
#include "src/turbomind/layers/DynamicDecodeLayer.h"
#include "src/turbomind/layers/sampling_layers/TopKSamplingLayer.h"
#include "src/turbomind/utils/Tensor.h"
#include "src/turbomind/utils/cublasMMWrapper.h"
#include "src/turbomind/utils/cuda_utils.h"
#include "src/turbomind/utils/memory_utils.h"
Li Zhang's avatar
Li Zhang committed
19
20
21

#include "tests/unittests/unittest_utils.h"

lvhan028's avatar
lvhan028 committed
22
using namespace turbomind;
Li Zhang's avatar
Li Zhang committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

struct TestCase {
    std::string name;
    size_t      batch_size;
    size_t      vocab_size;
    size_t      beam_width;
    size_t      top_k;
    float       top_p;
    size_t      output_len;

    std::string toString()
    {
        char buf[100];
        snprintf(buf,
                 sizeof(buf),
                 "TestCase[name=%s, batch=%ld, vocab=%ld, beam=%ld, k=%ld, p=%3.1f, output_len=%ld]",
                 name.c_str(),
                 batch_size,
                 vocab_size,
                 beam_width,
                 top_k,
                 top_p,
                 output_len);
        return buf;
    }

    void print()
    {
lvhan028's avatar
lvhan028 committed
51
        TM_LOG_INFO(toString());
Li Zhang's avatar
Li Zhang committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    }
};

template<typename T>
void computeProb(T* probs, T* logits, int batch_size, int vocab_size)
{
    // Compute the log probability from logits.
    //   logits = batch_size x vocab_size vector.
    //   logprobs = log(softmax(logits)) (softmax along with vocab dimension)
    for (int bidx = 0; bidx < batch_size; ++bidx) {
        float sum = 0.0f;
        for (int i = 0; i < vocab_size; ++i) {
            sum += expf((float)logits[bidx * vocab_size + i]);
        }
        for (int i = 0; i < vocab_size; ++i) {
            int idx    = bidx * vocab_size + i;
            probs[idx] = static_cast<T>(expf((float)logits[idx]) / (sum + EPSILON));
        }
    }
}

template<typename T>
void computeLogProb(T* logprobs, T* logits, int batch_size, int vocab_size)
{
    // Compute the log probability from logits.
    //   logits = batch_size x vocab_size vector.
    //   logprobs = log(softmax(logits)) (softmax along with vocab dimension)
    for (int bidx = 0; bidx < batch_size; ++bidx) {
        float sum = 0.0f;
        for (int i = 0; i < vocab_size; ++i) {
            sum += expf(logits[bidx * vocab_size + i]);
        }
        for (int i = 0; i < vocab_size; ++i) {
            int idx       = bidx * vocab_size + i;
            logprobs[idx] = static_cast<T>(logf(expf(logits[idx]) / (sum + EPSILON) + EPSILON));
        }
    }
}

/////////////////////////////////// Tests //////////////////////////////////////////

template<typename T>
void testCumLogProbComputation(TestCase tc)
{

    bool is_fp32 = std::is_same<T, float>::value;

    size_t             beam_width = tc.beam_width;
    uint               top_k      = tc.top_k;
    float              top_p      = tc.top_p;
    unsigned long long seed       = 0;
    // use default values having no effect.
    float temperature        = 1.0f;
    float len_penalty        = 0.0f;
    float repetition_penalty = 1.0f;

    size_t batch_size     = tc.batch_size;
    size_t vocab_size     = tc.vocab_size;
    int    end_id         = 3;
    size_t max_input_len  = 0;  // has no effect.
    size_t max_output_len = tc.output_len;
    size_t max_seq_len    = max_input_len + max_output_len;

    struct cudaDeviceProp prop;
    check_cuda_error(cudaGetDeviceProperties(&prop, 0));

    cudaStream_t     stream;
    cublasHandle_t   cublas_handle;
    cublasLtHandle_t cublaslt_handle;
    check_cuda_error(cudaStreamCreate(&stream));
    check_cuda_error(cublasCreate(&cublas_handle));
    check_cuda_error(cublasLtCreate(&cublaslt_handle));
    check_cuda_error(cublasSetStream(cublas_handle, stream));

    cublasAlgoMap                   cublas_algo_map(GEMM_CONFIG);
    Allocator<AllocatorType::CUDA>* allocator = new Allocator<AllocatorType::CUDA>(getDevice());
    allocator->setStream(stream);

    std::mutex*      cublas_wrapper_mutex = new std::mutex();
    cublasMMWrapper* cublas_wrapper =
        new cublasMMWrapper(cublas_handle, cublaslt_handle, stream, &cublas_algo_map, cublas_wrapper_mutex, allocator);

    DynamicDecodeLayer<T>* dynamic_decode_layer = new DynamicDecodeLayer<T>(vocab_size,
                                                                            vocab_size,
                                                                            end_id,
                                                                            stream,
                                                                            cublas_wrapper,
                                                                            allocator,
                                                                            false,   // is_free_buffer_after_forward
                                                                            &prop);  // cuda_device_prop

    const DataType data_type   = getTensorType<T>();
    size_t         logits_size = batch_size * beam_width * vocab_size;
    T*             logits_buf  = reinterpret_cast<T*>(allocator->malloc(sizeof(T) * logits_size, true));

    // Logit values in the host of shape ((batch_size x beam) x vocab_size) where beam = 1.
    T*     h_logits               = new T[batch_size * beam_width * vocab_size];
    T*     h_probs                = new T[batch_size * beam_width * vocab_size];
    T*     h_log_probs            = new T[batch_size * beam_width * vocab_size];
    float* h_cum_log_probs        = new float[batch_size * beam_width];
    float* h_output_log_probs     = new float[max_output_len * batch_size * beam_width];
    float* expected_cum_log_probs = new float[batch_size * beam_width];
    initRandom(h_logits, batch_size * beam_width * vocab_size, -10.0f / vocab_size, -1.0f);
    computeProb(h_probs, h_logits, batch_size * beam_width, vocab_size);
    computeLogProb(h_log_probs, h_logits, batch_size * beam_width, vocab_size);
    memset(expected_cum_log_probs, 0, sizeof(float) * batch_size * beam_width);

#ifndef NDEBUG
lvhan028's avatar
lvhan028 committed
160
    TM_LOG_DEBUG("logit values");
Li Zhang's avatar
Li Zhang committed
161
    printMatrixWithLimit(h_logits, batch_size * beam_width, vocab_size, vocab_size, false);
lvhan028's avatar
lvhan028 committed
162
    TM_LOG_DEBUG("\nprob values");
Li Zhang's avatar
Li Zhang committed
163
    printMatrixWithLimit(h_probs, batch_size * beam_width, vocab_size, vocab_size, false);
lvhan028's avatar
lvhan028 committed
164
    TM_LOG_DEBUG("\nlog-prob values");
Li Zhang's avatar
Li Zhang committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    printMatrixWithLimit(h_log_probs, batch_size * beam_width, vocab_size, vocab_size, false);
#endif

    int*   tiled_input_lengths_buf = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batch_size * beam_width));
    float* cum_log_probs = reinterpret_cast<float*>(allocator->malloc(sizeof(float) * batch_size * beam_width));
    float* output_log_probs =
        reinterpret_cast<float*>(allocator->malloc(sizeof(float) * max_output_len * batch_size * beam_width));

    int* output_ids   = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * max_seq_len * batch_size * beam_width));
    int* h_output_ids = new int[batch_size * beam_width];

    int* end_ids = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batch_size));
    deviceFill(end_ids, batch_size, end_id);

    // Init by zero.
    cudaMemset(cum_log_probs, 0, sizeof(float) * batch_size * beam_width);
    cudaMemset(output_log_probs, 0, sizeof(float) * max_output_len * batch_size * beam_width);
    cudaMemset(output_ids, 0, sizeof(int) * max_seq_len * batch_size * beam_width);

    TensorMap input_tensors({{"random_seed", {MEMORY_CPU, TYPE_INT32, {1}, &seed}},
                             {"runtime_top_k", {MEMORY_CPU, TYPE_UINT32, {1}, &top_k}},
                             {"runtime_top_p", {MEMORY_CPU, TYPE_FP32, {1}, &top_p}},
                             {"temperature", Tensor{MEMORY_CPU, TYPE_FP32, {1}, &temperature}},
                             {"len_penalty", Tensor{MEMORY_CPU, TYPE_FP32, {1}, &len_penalty}},
                             {"repetition_penalty", Tensor{MEMORY_CPU, TYPE_FP32, {1}, &repetition_penalty}}});
    dynamic_decode_layer->setup(batch_size, beam_width, &input_tensors);

    for (size_t step = max_input_len; step < max_output_len; ++step) {
        uint ite = 0;
        // Reset by the test value since the sampling layer internally update the logit buffer (making it log-prob).
        cudaH2Dcpy(logits_buf, h_logits, logits_size);
        TensorMap dynamic_decode_input_tensors(
            {{"logits", Tensor{MEMORY_GPU, TYPE_FP32, {batch_size, beam_width, vocab_size}, logits_buf}},
             {"embedding_bias", Tensor{MEMORY_GPU, data_type, {vocab_size}, nullptr}},
             {"step", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &step}},
             {"max_input_length", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &max_input_len}},
             {"input_lengths", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size, beam_width}, tiled_input_lengths_buf}},
             {"ite", Tensor{MEMORY_CPU, TYPE_UINT32, {1}, &ite}},
             {"local_batch_size", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &batch_size}},
             {"end_id", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size}, end_ids}},
             {"random_seed", {MEMORY_CPU, TYPE_UINT64, {1}, &seed}},
             {"runtime_top_k", {MEMORY_CPU, TYPE_UINT32, {1}, &top_k}},
             {"runtime_top_p", {MEMORY_CPU, TYPE_FP32, {1}, &top_p}},
             {"temperature", Tensor{MEMORY_CPU, TYPE_FP32, {1}, &temperature}},
             {"len_penalty", Tensor{MEMORY_CPU, TYPE_FP32, {1}, &len_penalty}},
             {"repetition_penalty", Tensor{MEMORY_CPU, TYPE_FP32, {1}, &repetition_penalty}}});

        // common outputs
        TensorMap dynamic_decode_output_tensors(
            {{"output_ids", Tensor{MEMORY_GPU, TYPE_INT32, {max_seq_len, batch_size, beam_width}, output_ids}},
             {"finished", Tensor{MEMORY_GPU, TYPE_BOOL, {batch_size * beam_width}, nullptr}},
             {"cum_log_probs", Tensor{MEMORY_GPU, TYPE_FP32, {batch_size * beam_width}, cum_log_probs}},
             {"output_log_probs",
              Tensor{MEMORY_GPU, TYPE_FP32, {max_seq_len, batch_size, beam_width}, output_log_probs}},
             {"parent_ids", Tensor{MEMORY_GPU, TYPE_INT32, {max_seq_len, batch_size, beam_width}, nullptr}},
             {"sequence_length", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size * beam_width}, nullptr}},
             // necessary for beam search.
             {"tgt_cache_indirection",
              Tensor{MEMORY_GPU, TYPE_INT32, {batch_size, beam_width, max_output_len}, nullptr}}});

        dynamic_decode_layer->forward(&dynamic_decode_output_tensors, &dynamic_decode_input_tensors);

lvhan028's avatar
lvhan028 committed
227
        TM_LOG_DEBUG("Step %2d generated ids", step);
Li Zhang's avatar
Li Zhang committed
228
229
230
231
232
233
234
235
236
        cudaD2Hcpy(
            h_output_ids,
            (int*)dynamic_decode_output_tensors.at("output_ids").getPtrWithOffset(step * (batch_size * beam_width)),
            batch_size * beam_width);
        cudaD2Hcpy(h_cum_log_probs, cum_log_probs, batch_size * beam_width);
        cudaD2Hcpy(h_output_log_probs, output_log_probs, max_output_len * batch_size * beam_width);
        for (size_t i = 0; i < batch_size * beam_width; ++i) {
            int idx = i * vocab_size + h_output_ids[i];
            expected_cum_log_probs[i] += (float)h_log_probs[idx];
lvhan028's avatar
lvhan028 committed
237
            TM_LOG_DEBUG("| step %2d batch %2d idx %7d id %6d | log-prob %9.4f (expt: %9.4f) "
Li Zhang's avatar
Li Zhang committed
238
239
240
241
242
243
244
245
246
247
248
                         "| cum-log-prob %9.4f (expt: %9.4f) | prob %9.4e",
                         (int)step,
                         (int)i,
                         (int)idx,
                         (int)h_output_ids[i],
                         h_output_log_probs[step * batch_size * beam_width + i],
                         (float)h_log_probs[idx],
                         h_cum_log_probs[i],
                         expected_cum_log_probs[i],
                         (float)h_probs[idx]);
        }
lvhan028's avatar
lvhan028 committed
249
        TM_LOG_DEBUG("");
Li Zhang's avatar
Li Zhang committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

#ifndef NDEBUG
        // print output ids
        for (size_t s = max_input_len; s < max_seq_len; ++s) {
            cudaD2Hcpy(
                h_output_ids,
                (int*)dynamic_decode_output_tensors.at("output_ids").getPtrWithOffset(s * (batch_size * beam_width)),
                batch_size * beam_width);
            printf("%02d ", (int)s);
            for (size_t b = 0; b < batch_size; ++b) {
                printf("%3d ", (int)h_output_ids[b]);
            }
            printf("\n");
        }
#endif
    }
    std::string tag    = tc.toString() + (is_fp32 ? " (fp32)" : " (fp16)");
    bool        passed = checkResult(tag, cum_log_probs, expected_cum_log_probs, batch_size * beam_width);
    EXPECT_TRUE(passed);

    delete[] expected_cum_log_probs;
    delete[] h_output_log_probs;
    delete[] h_cum_log_probs;
    delete[] h_logits;
    delete[] h_log_probs;
    delete[] h_probs;
    delete[] h_output_ids;

    delete dynamic_decode_layer;
    delete cublas_wrapper;
    delete allocator;
    check_cuda_error(cudaStreamDestroy(stream));
    check_cuda_error(cublasDestroy(cublas_handle));
    check_cuda_error(cublasLtDestroy(cublaslt_handle));
}

void printTensors(TensorMap* map, size_t limit = 8)
{
lvhan028's avatar
lvhan028 committed
288
    TM_LOG_INFO("Tensors:");
Li Zhang's avatar
Li Zhang committed
289
290
    for (auto& kv : *map) {
        Tensor t = kv.second;
lvhan028's avatar
lvhan028 committed
291
        TM_LOG_INFO(" - %-18s : %s", kv.first.c_str(), t.toString().c_str());
Li Zhang's avatar
Li Zhang committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    }
}

template<typename T>
class SamplingDecodeTest {
private:
    unsigned long long              seed           = 0;
    const static unsigned long long max_seed       = 30;
    const size_t                    batch_size     = 6;
    const size_t                    beam_width     = 1;
    const size_t                    batchxbeam     = batch_size * beam_width;
    const size_t                    vocab_size     = 8;
    const size_t                    max_input_len  = 0;  // has no effect.
    const size_t                    max_output_len = 3;
    const size_t                    max_seq_len    = max_input_len + max_output_len;
    const int                       end_id         = vocab_size - 1;
    const DataType                  data_type      = getTensorType<T>();

    // vocab size 8 & length 3
    T* test_input_logits;

    Allocator<AllocatorType::CUDA>* allocator;
    std::mutex*                     cublas_wrapper_mutex;
    cublasMMWrapper*                cublas_wrapper;
    DynamicDecodeLayer<T>*          dynamic_decode_layer;

    int*   h_output_ids;
    T*     h_logits;
    T*     h_probs;
    T*     h_log_probs;
    float* h_cum_log_probs;
    float* h_output_log_probs;

    T*     d_logits;
    int*   d_input_lengths;
    float* d_cum_log_probs;
    float* d_output_log_probs;
    int*   d_output_ids;
    int*   d_end_ids;

    void setup(unsigned long long seed = 0)
    {
        this->seed = seed;
        struct cudaDeviceProp prop;
        check_cuda_error(cudaGetDeviceProperties(&prop, 0));
        cudaStream_t     stream;
        cublasHandle_t   cublas_handle;
        cublasLtHandle_t cublaslt_handle;
        check_cuda_error(cudaStreamCreate(&stream));
        check_cuda_error(cublasCreate(&cublas_handle));
        check_cuda_error(cublasLtCreate(&cublaslt_handle));
        check_cuda_error(cublasSetStream(cublas_handle, stream));
        cublasAlgoMap cublas_algo_map(GEMM_CONFIG);
        allocator = new Allocator<AllocatorType::CUDA>(getDevice());
        allocator->setStream(stream);
        cublas_wrapper_mutex = new std::mutex();
        cublas_wrapper       = new cublasMMWrapper(
            cublas_handle, cublaslt_handle, stream, &cublas_algo_map, cublas_wrapper_mutex, allocator);
        dynamic_decode_layer = new DynamicDecodeLayer<T>(vocab_size,
                                                         vocab_size,
                                                         end_id,
                                                         stream,
                                                         cublas_wrapper,
                                                         allocator,
                                                         false,   // is_free_buffer_after_forward
                                                         &prop);  // cuda_device_prop

        h_output_ids       = new int[batchxbeam];
        h_logits           = new T[batchxbeam * vocab_size];
        h_probs            = new T[batchxbeam * vocab_size];
        h_log_probs        = new T[batchxbeam * vocab_size];
        h_cum_log_probs    = new float[batchxbeam];
        h_output_log_probs = new float[max_output_len * batchxbeam];

        // prob = (0.4, 0.3, 0.2, 0.1, ...)
        test_input_logits = new T[24]{
            -0.9163,  -1.2040,  -1.6094,  -2.3026,  -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX,  // step 0
            -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX, -0.9163,  -1.2040,  -1.6094,  -2.3026,   // step 1
            -FLT_MAX, -FLT_MAX, -0.9163,  -1.2040,  -1.6094,  -2.3026,  -FLT_MAX, -FLT_MAX   // step 2
        };

        d_logits           = reinterpret_cast<T*>(allocator->malloc(sizeof(T) * batchxbeam * vocab_size, true));
        d_input_lengths    = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batchxbeam));
        d_cum_log_probs    = reinterpret_cast<float*>(allocator->malloc(sizeof(float) * batchxbeam));
        d_output_log_probs = reinterpret_cast<float*>(allocator->malloc(sizeof(float) * max_output_len * batchxbeam));
        d_output_ids       = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * max_seq_len * batchxbeam));
        d_end_ids          = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batchxbeam));

        // Init by zero.
        cudaMemset(d_cum_log_probs, 0, sizeof(float) * batchxbeam);
        cudaMemset(d_output_log_probs, 0, sizeof(float) * max_output_len * batchxbeam);
        cudaMemset(d_output_ids, 0, sizeof(int) * max_seq_len * batchxbeam);
        deviceFill(d_end_ids, batchxbeam, end_id, stream);
    }

    void teardown()
    {
        delete[] test_input_logits;
        delete[] h_output_ids;
        delete[] h_logits;
        delete[] h_probs;
        delete[] h_log_probs;
        delete[] h_cum_log_probs;
        delete[] h_output_log_probs;
        delete dynamic_decode_layer;
        delete cublas_wrapper;
        delete cublas_wrapper_mutex;
        delete allocator;
    }

    TensorMap* createInputTensors(
        int* topk, size_t topk_size, float* topp, size_t topp_size, float* temperature, float* repetition_penalty)
    {
        // construct common input tensors
        TensorMap* input_tensors = new TensorMap();
        if (topk != nullptr) {
            input_tensors->insert({"runtime_top_k", {MEMORY_CPU, TYPE_INT32, {topk_size}, topk}});
        }
        if (topp != nullptr) {
            input_tensors->insert({"runtime_top_p", {MEMORY_CPU, TYPE_FP32, {topp_size}, topp}});
        }
        if (temperature != nullptr) {
            input_tensors->insert({"temperature", Tensor{MEMORY_CPU, TYPE_FP32, {1}, temperature}});
        }
        if (repetition_penalty != nullptr) {
            input_tensors->insert({"repetition_penalty", Tensor{MEMORY_CPU, TYPE_FP32, {1}, repetition_penalty}});
        }
        input_tensors->insert(
            {"logits", Tensor{MEMORY_GPU, TYPE_FP32, {batch_size, beam_width, vocab_size}, d_logits}});
        input_tensors->insert({"embedding_bias", Tensor{MEMORY_GPU, data_type, {vocab_size}, nullptr}});
        input_tensors->insert({"max_input_length", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &max_input_len}});
        input_tensors->insert(
            {"input_lengths", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size, beam_width}, d_input_lengths}});
        input_tensors->insert({"end_id", Tensor{MEMORY_CPU, TYPE_INT32, {batchxbeam}, &d_end_ids}});
        input_tensors->insert({"random_seed", Tensor{MEMORY_CPU, TYPE_UINT64, {1}, &seed}});
        return input_tensors;
    }

    TensorMap* createOutputTensors()
    {
        // construct common output tensors
        TensorMap* output_tensors = new TensorMap();
        output_tensors->insert(
            {"output_ids", Tensor{MEMORY_GPU, TYPE_INT32, {max_seq_len, batch_size, beam_width}, d_output_ids}});
        output_tensors->insert({"finished", Tensor{MEMORY_GPU, TYPE_BOOL, {batch_size * beam_width}, nullptr}});
        output_tensors->insert(
            {"cum_log_probs", Tensor{MEMORY_GPU, TYPE_FP32, {batch_size * beam_width}, d_cum_log_probs}});
        output_tensors->insert(
            {"output_log_probs",
             Tensor{MEMORY_GPU, TYPE_FP32, {max_seq_len, batch_size, beam_width}, d_output_log_probs}});
        output_tensors->insert({"sequence_length", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size * beam_width}, nullptr}});
        return output_tensors;
    }

    void batchH2Dcpy(T* dst, T* src, size_t m, size_t n)
    {
        for (size_t i = 0; i < m; ++i) {
            cudaH2Dcpy(dst + i * n, src, n);
        }
    }

    bool checkResult(std::string name, int* d_output_ids, std::vector<std::set<int>>& expected_ids)
    {
        assert(expected_ids.size() == max_seq_len * batchxbeam);
        int* h_output_ids = new int[max_seq_len * batchxbeam];
        cudaD2Hcpy(h_output_ids, d_output_ids, max_seq_len * batchxbeam);
        int failures = 0;
        for (size_t i = 0; i < max_seq_len * batchxbeam; ++i) {
            size_t        s     = i / batchxbeam;
            size_t        b     = i % batchxbeam;
            std::set<int> expts = expected_ids.at(i);
            if (expts.count(h_output_ids[i]) == 0) {
                if (failures < 10) {
                    std::stringstream ss;
                    ss << " - Fail " << name << " (step=" << s << ", batch=" << b << ") "
                       << "actual=" << h_output_ids[i] << ", expected";
                    for (auto& expt : expts) {
                        ss << " " << expt;
                    }
lvhan028's avatar
lvhan028 committed
471
                    TM_LOG_DEBUG("%s", ss.str().c_str());
Li Zhang's avatar
Li Zhang committed
472
473
474
475
476
                }
                ++failures;
            }
        }
        delete[] h_output_ids;
lvhan028's avatar
lvhan028 committed
477
        TM_LOG_DEBUG("check...%6s : %s (failures: %d / %d)",
Li Zhang's avatar
Li Zhang committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
                     failures == 0 ? "....OK" : "FAILED",
                     name.c_str(),
                     failures,
                     max_seq_len * batchxbeam);
        return failures == 0;
    }

    bool testSampling(std::string                name,
                      std::vector<std::set<int>> expected_output_ids,
                      int*                       top_ks,
                      size_t                     top_k_size,
                      float*                     top_ps,
                      size_t                     top_p_size,
                      float*                     temperature,
                      float*                     repetition_penalty)
    {
lvhan028's avatar
lvhan028 committed
494
        TM_LOG_INFO("Test %s", name.c_str());
Li Zhang's avatar
Li Zhang committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
        std::string tag    = fmtstr("Test %s T=%s", name.c_str(), std::is_same<T, float>::value ? "fp32" : "fp16");
        bool        passed = true;
        for (unsigned long long seed = 0; seed < max_seed; ++seed) {
            this->setup(seed);
            size_t     step = max_input_len;
            uint       ite  = 0;
            TensorMap* input_tensors =
                createInputTensors(top_ks, top_k_size, top_ps, top_p_size, temperature, repetition_penalty);
            input_tensors->insert({"step", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &step}});
            input_tensors->insert({"ite", Tensor{MEMORY_CPU, TYPE_UINT32, {1}, &ite}});
            input_tensors->insert({"local_batch_size", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &batch_size}});
            TensorMap* output_tensors = createOutputTensors();

            dynamic_decode_layer->setup(batch_size, beam_width, input_tensors);
            for (step = max_input_len; step < max_output_len; ++step) {
                // Reset by the test value since the sampling layer internally update the logit buffer.
                batchH2Dcpy(input_tensors->at("logits").getPtr<T>(),
                            test_input_logits + step * vocab_size,
                            batchxbeam,
                            vocab_size);
                dynamic_decode_layer->forward(output_tensors, input_tensors);
            }
            bool is_ok = checkResult(tag + fmtstr(" seed=%lld", seed), d_output_ids, expected_output_ids);
            passed &= is_ok;
#ifndef NDEBUG
            if (!is_ok) {
lvhan028's avatar
lvhan028 committed
521
                TM_LOG_ERROR("actual output ids");
Li Zhang's avatar
Li Zhang committed
522
523
524
525
526
527
528
                printMatrix(d_output_ids, max_seq_len, batch_size, batch_size, true);
            }
#endif
            delete output_tensors;
            delete input_tensors;
            this->teardown();
        }
lvhan028's avatar
lvhan028 committed
529
        TM_LOG_INFO("check...%6s : %s", passed ? "....OK" : "FAILED", tag.c_str());
Li Zhang's avatar
Li Zhang committed
530
531
532
533
534
535
536
537
538
539
540
541
        return passed;
    }

    bool testSamplingWithLocalBatch(std::string                name,
                                    std::vector<std::set<int>> expected_output_ids,
                                    int*                       top_ks,
                                    size_t                     top_k_size,
                                    float*                     top_ps,
                                    size_t                     top_p_size,
                                    float*                     temperature,
                                    float*                     repetition_penalty)
    {
lvhan028's avatar
lvhan028 committed
542
        TM_LOG_INFO("Test %s", name.c_str());
Li Zhang's avatar
Li Zhang committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
        std::string tag    = fmtstr("Test %s T=%s", name.c_str(), std::is_same<T, float>::value ? "fp32" : "fp16");
        bool        passed = true;
        size_t      local_batch_size = 2;
        uint        ite              = 1;
        for (unsigned long long seed = 0; seed < max_seed; ++seed) {
            this->setup(seed);
            size_t     step = max_input_len;
            TensorMap* input_tensors =
                createInputTensors(top_ks, top_k_size, top_ps, top_p_size, temperature, repetition_penalty);
            input_tensors->insert({"step", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &step}});
            input_tensors->insert({"ite", Tensor{MEMORY_CPU, TYPE_UINT32, {1}, &ite}});
            input_tensors->insert({"local_batch_size", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &local_batch_size}});
            TensorMap* output_tensors = createOutputTensors();

            dynamic_decode_layer->setup(batch_size, beam_width, input_tensors);
            for (step = max_input_len; step < max_output_len; ++step) {
                // Reset by the test value since the sampling layer internally update the logit buffer.
                batchH2Dcpy(input_tensors->at("logits").getPtr<T>(),
                            test_input_logits + step * vocab_size,
                            batchxbeam,
                            vocab_size);
                dynamic_decode_layer->forward(output_tensors, input_tensors);
            }
            bool is_ok = checkResult(tag + fmtstr(" seed=%lld", seed), d_output_ids, expected_output_ids);
            passed &= is_ok;
#ifndef NDEBUG
            if (!is_ok) {
lvhan028's avatar
lvhan028 committed
570
                TM_LOG_ERROR("actual output ids");
Li Zhang's avatar
Li Zhang committed
571
572
573
574
575
576
577
                printMatrix(d_output_ids, max_seq_len, batch_size, batch_size, true);
            }
#endif
            delete output_tensors;
            delete input_tensors;
            this->teardown();
        }
lvhan028's avatar
lvhan028 committed
578
        TM_LOG_INFO("check...%6s : %s", passed ? "....OK" : "FAILED", tag.c_str());
Li Zhang's avatar
Li Zhang committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
        return passed;
    }

public:
    void testTopK()
    {
        int                        top_k = 2;
        std::vector<std::set<int>> expected_output_ids{
            // batch
            //  0       1       2       3       4       5
            {0, 1},
            {0, 1},
            {0, 1},
            {0, 1},
            {0, 1},
            {0, 1},  // step 0
            {4, 5},
            {4, 5},
            {4, 5},
            {4, 5},
            {4, 5},
            {4, 5},  // step 1
            {2, 3},
            {2, 3},
            {2, 3},
            {2, 3},
            {2, 3},
            {2, 3}  // step 2
        };
        bool passed = this->testSampling("TopK", expected_output_ids, &top_k, 1, nullptr, 0, nullptr, nullptr);
        EXPECT_TRUE(true);
    }

    void testBatchTopK()
    {
        int*                       top_ks = new int[batch_size]{2, 1, 1, 2, 1, 1};
        std::vector<std::set<int>> expected_output_ids{
            // batch
            //  0    1    2       3    4    5
            {0, 1},
            {0},
            {0},
            {0, 1},
            {0},
            {0},  // step 0
            {4, 5},
            {4},
            {4},
            {4, 5},
            {4},
            {4},  // step 1
            {2, 3},
            {2},
            {2},
            {2, 3},
            {2},
            {2}  // step 2
        };
        bool passed =
            this->testSampling("BatchTopK", expected_output_ids, top_ks, batch_size, nullptr, 0, nullptr, nullptr);
        delete[] top_ks;
        EXPECT_TRUE(passed);
    }

    void testTopP()
    {
        float                      top_p = 0.3;
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0},
            {0},
            {0},
            {0},
            {0},
            {0},  // step 0
            {4},
            {4},
            {4},
            {4},
            {4},
            {4},  // step 1
            {2},
            {2},
            {2},
            {2},
            {2},
            {2}  // step 2
        };
        bool passed = this->testSampling("TopP", expected_output_ids, nullptr, 0, &top_p, 1, nullptr, nullptr);
        EXPECT_TRUE(true);
    }

    void testBatchTopP()
    {
        float*                     top_ps = new float[batch_size]{0.3f, 0.5f, 0.5f, 0.3f, 0.5f, 0.5f};
        std::vector<std::set<int>> expected_output_ids{
            {0},
            {0, 1},
            {0, 1},
            {0},
            {0, 1},
            {0, 1},  // step 0
            {4},
            {4, 5},
            {4, 5},
            {4},
            {4, 5},
            {4, 5},  // step 1
            {2},
            {2, 3},
            {2, 3},
            {2},
            {2, 3},
            {2, 3}  // step 2
        };
        bool passed =
            this->testSampling("BatchTopP", expected_output_ids, nullptr, 0, top_ps, batch_size, nullptr, nullptr);
        delete[] top_ps;
        EXPECT_TRUE(passed);
    }

    void testTopKTopP()
    {
        int                        top_k = 2;
        float                      top_p = 0.3;
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0},
            {0},
            {0},
            {0},
            {0},
            {0},  // step 0
            {4},
            {4},
            {4},
            {4},
            {4},
            {4},  // step 1
            {2},
            {2},
            {2},
            {2},
            {2},
            {2}  // step 2
        };
        bool passed = this->testSampling("TopP", expected_output_ids, &top_k, 1, &top_p, 1, nullptr, nullptr);
        EXPECT_TRUE(true);
    }

    void testBatchTopKTopP()
    {
        std::string                name   = "BatchTopKTopP";
        int*                       top_ks = new int[batch_size]{2, 2, 1, 2, 2, 1};
        float                      top_p  = 0.3;
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0},
            {0},
            {0},
            {0},
            {0},
            {0},  // step 0
            {4},
            {4},
            {4},
            {4},
            {4},
            {4},  // step 1
            {2},
            {2},
            {2},
            {2},
            {2},
            {2}  // step 2
        };
        bool passed = this->testSampling(name, expected_output_ids, top_ks, batch_size, &top_p, 1, nullptr, nullptr);
        delete[] top_ks;
        EXPECT_TRUE(passed);
    }

    void testTopKBatchTopP()
    {
        std::string                name   = "TopKBatchTopP";
        int                        top_k  = 2;
        float*                     top_ps = new float[batch_size]{0.5, 0.3, 0.5, 0.5, 0.3, 0.5};
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0, 1},
            {0},
            {0, 1},
            {0, 1},
            {0},
            {0, 1},  // step 0
            {4, 5},
            {4},
            {4, 5},
            {4, 5},
            {4},
            {4, 5},  // step 1
            {2, 3},
            {2},
            {2, 3},
            {2, 3},
            {2},
            {2, 3}  // step 2
        };
        bool passed = this->testSampling(name, expected_output_ids, &top_k, 1, top_ps, batch_size, nullptr, nullptr);
        delete[] top_ps;
        EXPECT_TRUE(passed);
    }

    void testBatchTopKBatchTopP()
    {
        std::string                name   = "BatchTopKBatchTopP";
        int*                       top_ks = new int[batch_size]{2, 2, 0, 2, 2, 0};
        float*                     top_ps = new float[batch_size]{0.0, 0.3, 0.5, 0.0, 0.3, 0.5};
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0, 1},
            {0},
            {0, 1},
            {0, 1},
            {0},
            {0, 1},  // step 0
            {4, 5},
            {4},
            {4, 5},
            {4, 5},
            {4},
            {4, 5},  // step 1
            {2, 3},
            {2},
            {2, 3},
            {2, 3},
            {2},
            {2, 3}  // step 2
        };
        bool passed =
            this->testSampling(name, expected_output_ids, top_ks, batch_size, top_ps, batch_size, nullptr, nullptr);
        delete[] top_ks;
        delete[] top_ps;
        EXPECT_TRUE(passed);
    }

    void testInvalidArgsZeroTopK()
    {
        std::string                name  = "InvalidArgsZeroTopK";
        int                        top_k = 0;
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0},
            {0},
            {0},
            {0},
            {0},
            {0},  // step 0
            {4},
            {4},
            {4},
            {4},
            {4},
            {4},  // step 1
            {2},
            {2},
            {2},
            {2},
            {2},
            {2}  // step 2
        };
        bool passed = this->testSampling(name, expected_output_ids, &top_k, 1, nullptr, 0, nullptr, nullptr);
        EXPECT_TRUE(passed);
    }

    void testInvalidArgsZeroTopP()
    {
        std::string                name  = "InvalidArgsZeroTopP";
        float                      top_p = 0;
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0},
            {0},
            {0},
            {0},
            {0},
            {0},  // step 0
            {4},
            {4},
            {4},
            {4},
            {4},
            {4},  // step 1
            {2},
            {2},
            {2},
            {2},
            {2},
            {2}  // step 2
        };
        bool passed = this->testSampling(name, expected_output_ids, nullptr, 0, &top_p, 1, nullptr, nullptr);
        EXPECT_TRUE(passed);
    }

    void testInvalidArgsZeroTopKTopP()
    {
        std::string                name  = "InvalidArgsZeroTopKTopP";
        int                        top_k = 0;
        float                      top_p = 0;
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0},
            {0},
            {0},
            {0},
            {0},
            {0},  // step 0
            {4},
            {4},
            {4},
            {4},
            {4},
            {4},  // step 1
            {2},
            {2},
            {2},
            {2},
            {2},
            {2}  // step 2
        };
        bool passed = this->testSampling(name, expected_output_ids, &top_k, 1, &top_p, 1, nullptr, nullptr);
        EXPECT_TRUE(passed);
    }

    void testInvalidArgsZeroBatchTopKTopP()
    {
        std::string                name   = "InvalidArgsZeroBatchTopKTopP";
        int*                       top_ks = new int[batch_size]{0, 0, 0, 0, 0, 0};
        float                      top_p  = 0;
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0},
            {0},
            {0},
            {0},
            {0},
            {0},  // step 0
            {4},
            {4},
            {4},
            {4},
            {4},
            {4},  // step 1
            {2},
            {2},
            {2},
            {2},
            {2},
            {2}  // step 2
        };
        bool passed = this->testSampling(name, expected_output_ids, top_ks, batch_size, &top_p, 1, nullptr, nullptr);
        delete[] top_ks;
        EXPECT_TRUE(passed);
    }

    void testInvalidArgsZeroTopKBatchTopP()
    {
        std::string                name   = "InvalidArgsZeroTopKBatchTopP";
        int                        top_k  = 0;
        float*                     top_ps = new float[batch_size]{0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0},
            {0},
            {0},
            {0},
            {0},
            {0},  // step 0
            {4},
            {4},
            {4},
            {4},
            {4},
            {4},  // step 1
            {2},
            {2},
            {2},
            {2},
            {2},
            {2}  // step 2
        };
        bool passed = this->testSampling(name, expected_output_ids, &top_k, 1, top_ps, batch_size, nullptr, nullptr);
        delete[] top_ps;
        EXPECT_TRUE(passed);
    }

    void testInvalidArgsBatchTopKContainZero()
    {
        std::string                name   = "InvalidArgsBatchTopKContainZero";
        int*                       top_ks = new int[batch_size]{2, 1, 0, 0, 2, 1};
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0, 1},
            {0},
            {0},
            {0},
            {0, 1},
            {0},  // step 0
            {4, 5},
            {4},
            {4},
            {4},
            {4, 5},
            {4},  // step 1
            {2, 3},
            {2},
            {2},
            {2},
            {2, 3},
            {2}  // step 2
        };
        bool passed = this->testSampling(name, expected_output_ids, top_ks, batch_size, nullptr, 0, nullptr, nullptr);
        delete[] top_ks;
        EXPECT_TRUE(passed);
    }

    void testInvalidArgsBatchTopPContainZero()
    {
        std::string                name   = "InvalidArgsBatchTopPContainZero";
        float*                     top_ps = new float[batch_size]{0.5f, 0.5f, 0.0f, 0.5f, 0.0f, 0.3f};
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0, 1},
            {0, 1},
            {0},
            {0, 1},
            {0},
            {0},  // step 0
            {4, 5},
            {4, 5},
            {4},
            {4, 5},
            {4},
            {4},  // step 1
            {2, 3},
            {2, 3},
            {2},
            {2, 3},
            {2},
            {2}  // step 2
        };
        bool passed = this->testSampling(name, expected_output_ids, nullptr, 0, top_ps, batch_size, nullptr, nullptr);
        delete[] top_ps;
        EXPECT_TRUE(passed);
    }

    void testInvalidArgsBatchTopKTopPContainZero()
    {
        std::string                name   = "InvalidArgsBatchTopKTopPContainZero";
        int*                       top_ks = new int[batch_size]{2, 2, 1, 0, 2, 0};
        float                      top_p  = 0.0;
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0, 1},
            {0, 1},
            {0},
            {0},
            {0, 1},
            {0},  // step 0
            {4, 5},
            {4, 5},
            {4},
            {4},
            {4, 5},
            {4},  // step 1
            {2, 3},
            {2, 3},
            {2},
            {2},
            {2, 3},
            {2}  // step 2
        };
        bool passed = this->testSampling(name, expected_output_ids, top_ks, batch_size, &top_p, 1, nullptr, nullptr);
        delete[] top_ks;
        EXPECT_TRUE(passed);
    }

    void testInvalidArgsTopKBatchTopPContainZero()
    {
        std::string                name   = "InvalidArgsTopKBatchTopPContainZero";
        int                        top_k  = 0;
        float*                     top_ps = new float[batch_size]{0.0, 0.3, 0.5, 0.0, 0.3, 0.5};
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0},
            {0},
            {0, 1},
            {0},
            {0},
            {0, 1},  // step 0
            {4},
            {4},
            {4, 5},
            {4},
            {4},
            {4, 5},  // step 1
            {2},
            {2},
            {2, 3},
            {2},
            {2},
            {2, 3}  // step 2
        };
        bool passed = this->testSampling(name, expected_output_ids, &top_k, 1, top_ps, batch_size, nullptr, nullptr);
        delete[] top_ps;
        EXPECT_TRUE(passed);
    }

    void testInvalidArgsBatchTopKBatchTopPContainZero()
    {
        std::string                name   = "InvalidArgsBatchTopKBatchTopPContainZero";
        int*                       top_ks = new int[batch_size]{0, 2, 1, 2, 2, 0};
        float*                     top_ps = new float[batch_size]{0.0, 0.3, 0.9, 0.0, 0.3, 0.5};
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0},
            {0},
            {0},
            {0, 1},
            {0},
            {0, 1},  // step 0
            {4},
            {4},
            {4},
            {4, 5},
            {4},
            {4, 5},  // step 1
            {2},
            {2},
            {2},
            {2, 3},
            {2},
            {2, 3}  // step 2
        };
        bool passed =
            this->testSampling(name, expected_output_ids, top_ks, batch_size, top_ps, batch_size, nullptr, nullptr);
        delete[] top_ks;
        delete[] top_ps;
        EXPECT_TRUE(passed);
    }

    void testLocalBatchBatchTopP()
    {
        std::string                name   = "LocalBatch_BatchTopP";
        float*                     top_ps = new float[batch_size]{0.3f, 0.5f, 0.5f, 0.3f, 0.5f, 0.5f};
        std::vector<std::set<int>> expected_output_ids{
            {0},
            {0},
            {0, 1},
            {0},
            {0},
            {0},  // step 0
            {0},
            {0},
            {4, 5},
            {4},
            {0},
            {0},  // step 1
            {0},
            {0},
            {2, 3},
            {2},
            {0},
            {0}  // step 2
        };
        bool passed = this->testSamplingWithLocalBatch(
            name, expected_output_ids, nullptr, 0, top_ps, batch_size, nullptr, nullptr);
        delete[] top_ps;
        EXPECT_TRUE(passed);
    }

    void testLocalBatchBatchTopKBatchTopP()
    {
        std::string                name   = "LocalBatch_BatchTopKBatchTopP";
        int*                       top_ks = new int[batch_size]{2, 2, 0, 2, 2, 0};
        float*                     top_ps = new float[batch_size]{0.0, 0.3, 0.5, 0.0, 0.3, 0.5};
        std::vector<std::set<int>> expected_output_ids{
            // batch
            {0},
            {0},
            {0, 1},
            {0, 1},
            {0},
            {0},  // step 0
            {0},
            {0},
            {4, 5},
            {4, 5},
            {0},
            {0},  // step 1
            {0},
            {0},
            {2, 3},
            {2, 3},
            {0},
            {0}  // step 2
        };
        bool passed = this->testSamplingWithLocalBatch(
            name, expected_output_ids, top_ks, batch_size, top_ps, batch_size, nullptr, nullptr);
        delete[] top_ks;
        delete[] top_ps;
        EXPECT_TRUE(passed);
    }

    void testAll()
    {
        this->testTopK();
        this->testTopP();
        this->testTopKTopP();
        this->testBatchTopK();
        this->testBatchTopP();
        this->testBatchTopKTopP();
        this->testTopKBatchTopP();
        this->testBatchTopKBatchTopP();
        this->testInvalidArgsZeroTopK();
        this->testInvalidArgsZeroTopP();
        this->testInvalidArgsZeroBatchTopKTopP();
        this->testInvalidArgsZeroTopKBatchTopP();
        this->testInvalidArgsZeroTopKTopP();
        this->testInvalidArgsBatchTopKContainZero();
        this->testInvalidArgsBatchTopPContainZero();
        this->testInvalidArgsBatchTopKTopPContainZero();
        this->testInvalidArgsTopKBatchTopPContainZero();
        this->testInvalidArgsBatchTopKBatchTopPContainZero();
        this->testLocalBatchBatchTopP();
        this->testLocalBatchBatchTopKBatchTopP();
    }
};

__global__ void generateRandomNumber(unsigned int* vals, curandState_t* states, const int batch_size)
{
    int idx = threadIdx.x;
    if (idx < batch_size) {
        vals[idx] = curand(states + idx);
    }
}

template<typename T>
static inline bool isEqualInPeriod(T* vals, size_t size, size_t period_size)
{
    // The same seed produces the same random number.
    for (size_t i = 0; i + period_size - 1 < size; i += period_size) {
        for (size_t j = 1; j < period_size; ++j) {
            if (vals[i] != vals[i + j]) {
lvhan028's avatar
lvhan028 committed
1232
                TM_LOG_INFO(" **** *** ** * [%d] %d <> [%d] %d", i, vals[i], i + j, vals[i + j]);
Li Zhang's avatar
Li Zhang committed
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
                return false;
            }
        }
    }
    return true;
}

template<typename T>
static inline bool isEqualInPeriod(T* vals, size_t size, size_t period_size, size_t except)
{
    // The same seed produces the same random number.
    for (size_t i = 0; i + period_size - 1 < size; i += period_size) {
        for (size_t j = 1; j < period_size; ++j) {
            if (j != except && vals[i] != vals[i + j]) {
lvhan028's avatar
lvhan028 committed
1247
                TM_LOG_INFO(" **** *** ** * [%d] %d <> [%d] %d", i, vals[i], i + j, vals[i + j]);
Li Zhang's avatar
Li Zhang committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
                return false;
            }
        }
    }
    return true;
}

void testCuandBatchInitialize(const size_t batch_size)
{
    cudaStream_t stream;
    cudaStreamCreate(&stream);

    curandState_t* curand_states;
    check_cuda_error(cudaMalloc(&curand_states, sizeof(curandState_t) * batch_size));
    unsigned long long* h_random_seeds = new unsigned long long[batch_size];
    const size_t        period_size    = 3;
    for (size_t i = 0; i < batch_size; ++i) {
        h_random_seeds[i] = i / period_size;
    }
    unsigned long long* d_random_seeds;
    check_cuda_error(cudaMalloc(&d_random_seeds, sizeof(unsigned long long) * batch_size));
    check_cuda_error(
        cudaMemcpy(d_random_seeds, h_random_seeds, sizeof(unsigned long long) * batch_size, cudaMemcpyHostToDevice));

    // Initialize curand states.
    invokeCurandBatchInitialize(curand_states, batch_size, d_random_seeds, stream);
    sync_check_cuda_error();

    // Generate random numbers using initialized curand states.
    unsigned int* d_rand_vals;
    unsigned int* h_rand_vals = new unsigned int[batch_size];
    check_cuda_error(cudaMalloc(&d_rand_vals, sizeof(unsigned int) * batch_size));
    generateRandomNumber<<<1, batch_size, 0, stream>>>(d_rand_vals, curand_states, batch_size);
    check_cuda_error(
        cudaMemcpyAsync(h_rand_vals, d_rand_vals, sizeof(unsigned int) * batch_size, cudaMemcpyDeviceToHost, stream));
    check_cuda_error(cudaStreamSynchronize(stream));

    // The same seed produces the same random number.
    bool passed = isEqualInPeriod(h_rand_vals, batch_size, period_size);
lvhan028's avatar
lvhan028 committed
1287
    TM_LOG_INFO("CuandBatchInitTest check....... : %s", passed ? "OK" : "FAILED");
Li Zhang's avatar
Li Zhang committed
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
    EXPECT_TRUE(passed);

    delete h_rand_vals;
    delete h_random_seeds;

    check_cuda_error(cudaFree(d_rand_vals));
    check_cuda_error(cudaFree(d_random_seeds));
    check_cuda_error(cudaFree(curand_states));
    check_cuda_error(cudaStreamDestroy(stream));
}

template<typename T, bool SINGLE_RANDOM_SEED, bool HAS_DIFF_ARGS, bool USE_LOCAL_BATCH>
void testSamplingLayerCurandInit(TestCase tc)
{
lvhan028's avatar
lvhan028 committed
1302
    TM_LOG_DEBUG("testSamplingLayerCurandInit %s", tc.toString().c_str());
Li Zhang's avatar
Li Zhang committed
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
    const DataType data_type = getTensorType<T>();

    const size_t beam_width = 1;
    const uint   top_k      = tc.top_k;
    const float  top_p      = tc.top_p;
    // use default values having no effect.
    const float temperature        = 1.0f;
    const float len_penalty        = 0.0f;
    const float repetition_penalty = 1.0f;
    const int   end_id             = 3;

    const size_t batch_size       = tc.batch_size;
    const size_t batchxbeam       = batch_size * beam_width;
    const size_t local_batch_size = USE_LOCAL_BATCH ? 2 : batch_size;
    assert(batch_size % local_batch_size == 0);
    const size_t vocab_size     = tc.vocab_size;
    const size_t max_input_len  = 0;  // has no effect.
    const size_t max_output_len = tc.output_len;
    const size_t max_seq_len    = max_input_len + max_output_len;

    struct cudaDeviceProp prop;
    check_cuda_error(cudaGetDeviceProperties(&prop, 0));

    cudaStream_t     stream;
    cublasHandle_t   cublas_handle;
    cublasLtHandle_t cublaslt_handle;
    check_cuda_error(cudaStreamCreate(&stream));
    check_cuda_error(cublasCreate(&cublas_handle));
    check_cuda_error(cublasLtCreate(&cublaslt_handle));
    check_cuda_error(cublasSetStream(cublas_handle, stream));
    cublasAlgoMap                   cublas_algo_map(GEMM_CONFIG);
    std::mutex*                     cublas_wrapper_mutex = new std::mutex();
    Allocator<AllocatorType::CUDA>* allocator            = new Allocator<AllocatorType::CUDA>(getDevice());
    allocator->setStream(stream);
    cublasMMWrapper* cublas_wrapper =
        new cublasMMWrapper(cublas_handle, cublaslt_handle, stream, &cublas_algo_map, cublas_wrapper_mutex, allocator);
    DynamicDecodeLayer<T>* dynamic_decode_layer = new DynamicDecodeLayer<T>(vocab_size,
                                                                            vocab_size,
                                                                            end_id,
                                                                            stream,
                                                                            cublas_wrapper,
                                                                            allocator,
                                                                            false,   // is_free_buffer_after_forward
                                                                            &prop);  // cuda_device_prop

    T*   h_logits     = reinterpret_cast<T*>(malloc(sizeof(T) * batchxbeam * vocab_size));
    int* h_output_ids = reinterpret_cast<int*>(malloc(sizeof(int) * batchxbeam));

    T*   d_logits_buf    = reinterpret_cast<T*>(allocator->malloc(sizeof(T) * batchxbeam * vocab_size));
    int* d_input_lengths = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batchxbeam));
    int* d_output_ids    = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * max_seq_len * batchxbeam));

    // Init by zero.
    cudaMemset(d_input_lengths, 0, sizeof(int) * batchxbeam);
    cudaMemset(d_output_ids, 0, sizeof(int) * max_seq_len * batchxbeam);

    // Prepare decoding arguments
    const size_t        random_seed_size = SINGLE_RANDOM_SEED ? 1 : batch_size;
    const size_t        period_size      = 3;
    unsigned long long* random_seed      = new unsigned long long[random_seed_size];
    for (size_t i = 0; i < random_seed_size; ++i) {
        random_seed[i] = i / period_size;
    }
    const bool   has_diff_runtime_args = HAS_DIFF_ARGS;
    const size_t runtime_args_size     = has_diff_runtime_args ? batch_size : 1;
    uint*        runtime_top_k         = new uint[runtime_args_size];
    float*       runtime_top_p         = new float[runtime_args_size];
    const size_t except_idx            = 1;
    for (size_t i = 0; i < runtime_args_size; ++i) {
        runtime_top_k[i] = (top_k > 1) && (i % period_size == except_idx) ? 1 : top_k;
        runtime_top_p[i] = (i % period_size == except_idx) ? top_p * 0.1f : top_p;
    }
    int* d_end_id_buf = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batch_size));
    deviceFill(d_end_id_buf, batch_size, end_id);

#ifndef NDEBUG
lvhan028's avatar
lvhan028 committed
1379
    TM_LOG_DEBUG("Random Seeds");
Li Zhang's avatar
Li Zhang committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
    printMatrixWithLimit(random_seed, 1, random_seed_size, random_seed_size, false);
#endif

    bool passed = true;

    TensorMap runtime_args;
    runtime_args.insert({"has_diff_runtime_args", Tensor(MEMORY_CPU, TYPE_BOOL, {1}, &has_diff_runtime_args)});
    runtime_args.insert({"random_seed", Tensor(MEMORY_CPU, TYPE_UINT64, {random_seed_size}, random_seed)});
    runtime_args.insert({"runtime_top_k", Tensor(MEMORY_CPU, TYPE_INT32, {runtime_args_size}, runtime_top_k)});
    runtime_args.insert({"runtime_top_p", Tensor(MEMORY_CPU, TYPE_FP32, {runtime_args_size}, runtime_top_p)});
    runtime_args.insert({"temperature", Tensor(MEMORY_CPU, TYPE_FP32, {1}, &temperature)});
    runtime_args.insert({"len_penalty", Tensor(MEMORY_CPU, TYPE_FP32, {1}, &len_penalty)});
    runtime_args.insert({"repetition_penalty", Tensor(MEMORY_CPU, TYPE_FP32, {1}, &repetition_penalty)});
    dynamic_decode_layer->setup(batch_size, beam_width, &runtime_args);

    for (size_t step = max_input_len; step < max_output_len; ++step) {
        const size_t iteration_num = batch_size / local_batch_size;

        initRandom(h_logits, beam_width * vocab_size, -10.0f / vocab_size, -1.0f);
        tile(h_logits, batch_size, beam_width * vocab_size);
        cudaH2Dcpy(d_logits_buf, h_logits, batchxbeam * vocab_size);

#ifndef NDEBUG
lvhan028's avatar
lvhan028 committed
1403
        TM_LOG_DEBUG("logit values");
Li Zhang's avatar
Li Zhang committed
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
        printMatrixWithLimit(h_logits, batchxbeam, vocab_size, vocab_size, false);
#endif
        for (uint ite = 0; ite < iteration_num; ++ite) {
            TensorMap dynamic_decode_input_tensors(
                {{"logits", Tensor{MEMORY_GPU, data_type, {batch_size, beam_width, vocab_size}, d_logits_buf}},
                 {"embedding_bias", Tensor{MEMORY_GPU, data_type, {vocab_size}, nullptr}},
                 {"step", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &step}},
                 {"max_input_length", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &max_input_len}},
                 {"input_lengths", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size, beam_width}, d_input_lengths}},
                 {"ite", Tensor{MEMORY_CPU, TYPE_UINT32, {1}, &ite}},
                 {"has_diff_runtime_args", Tensor{MEMORY_CPU, TYPE_BOOL, {1}, &has_diff_runtime_args}},
                 {"local_batch_size", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &local_batch_size}},
                 {"end_id", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size}, d_end_id_buf}},
                 {"random_seed", {MEMORY_CPU, TYPE_UINT64, {random_seed_size}, random_seed}},
                 {"runtime_top_k", {MEMORY_CPU, TYPE_UINT32, {runtime_args_size}, runtime_top_k}},
                 {"runtime_top_p", {MEMORY_CPU, TYPE_FP32, {runtime_args_size}, runtime_top_p}},
                 {"temperature", Tensor{MEMORY_CPU, TYPE_FP32, {1}, &temperature}},
                 {"len_penalty", Tensor{MEMORY_CPU, TYPE_FP32, {1}, &len_penalty}},
                 {"repetition_penalty", Tensor{MEMORY_CPU, TYPE_FP32, {1}, &repetition_penalty}}});

            // common outputs
            TensorMap dynamic_decode_output_tensors(
                {{"output_ids", Tensor{MEMORY_GPU, TYPE_INT32, {max_seq_len, batch_size, beam_width}, d_output_ids}},
                 {"finished", Tensor{MEMORY_GPU, TYPE_BOOL, {batch_size * beam_width}, nullptr}},
                 {"parent_ids", Tensor{MEMORY_GPU, TYPE_INT32, {max_seq_len, batch_size, beam_width}, nullptr}},
                 {"sequence_length", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size * beam_width}, nullptr}},
                 // necessary for beam search.
                 {"tgt_cache_indirection",
                  Tensor{MEMORY_GPU, TYPE_INT32, {batch_size, beam_width, max_output_len}, nullptr}}});

            dynamic_decode_layer->forward(&dynamic_decode_output_tensors, &dynamic_decode_input_tensors);
            sync_check_cuda_error();
#ifndef NDEBUG
lvhan028's avatar
lvhan028 committed
1437
            TM_LOG_DEBUG("Step %2d generated ids", step);
Li Zhang's avatar
Li Zhang committed
1438
            printMatrix(d_output_ids, max_seq_len, batchxbeam, batchxbeam, true);
lvhan028's avatar
lvhan028 committed
1439
            TM_LOG_DEBUG("");
Li Zhang's avatar
Li Zhang committed
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
#endif
            // check results.
            cudaD2Hcpy(h_output_ids,
                       (int*)dynamic_decode_output_tensors.at("output_ids").getPtrWithOffset(step * batchxbeam),
                       batchxbeam);
        }
        bool is_ok = isEqualInPeriod(h_output_ids, batchxbeam, period_size, except_idx);
        passed &= is_ok;
    }
    std::string tag = fmtstr("%s (seed=%-6s has_diff_args=%-5s local_batch=%-5s T=%s)",
                             tc.toString().c_str(),
                             SINGLE_RANDOM_SEED ? "single" : "multi",
                             HAS_DIFF_ARGS ? "true" : "false",
                             USE_LOCAL_BATCH ? "true" : "false",
                             (std::is_same<T, float>::value ? " fp32" : " fp16"));
lvhan028's avatar
lvhan028 committed
1455
    TM_LOG_INFO("check...%s SamplingLayerCurandInitTest %-30s", passed ? "....OK" : "FAILED", tag.c_str());
Li Zhang's avatar
Li Zhang committed
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
    EXPECT_TRUE(passed);

    free(h_logits);
    free(h_output_ids);

    delete dynamic_decode_layer;
    delete runtime_top_k;
    delete runtime_top_p;
    delete random_seed;
    delete cublas_wrapper;
    delete allocator;
    check_cuda_error(cudaStreamDestroy(stream));
    check_cuda_error(cublasDestroy(cublas_handle));
    check_cuda_error(cublasLtDestroy(cublaslt_handle));
}

int main()
{
    std::vector<TestCase> test_cases{
        // TC: name / batch / vocab / beam / k / p / outlen
        TestCase{"topk", 6, 4, 1, 1, 0.0f, 4},
        TestCase{"topk", 6, 4, 1, 4, 0.0f, 4},
        TestCase{"topk", 6, 51200, 1, 31, 0.0f, 16},
        TestCase{"topk", 32, 51200, 1, 63, 0.0f, 16},
        TestCase{"topk", 32, 51200, 1, 64, 0.0f, 16},
        TestCase{"topp", 6, 4, 1, 0, 0.2f, 4},
        TestCase{"topp", 6, 4, 1, 0, 0.8f, 4},
        TestCase{"topp", 6, 4, 1, 0, 1.0f, 4},
        TestCase{"topp", 6, 51200, 1, 0, 0.8f, 16},
        TestCase{"topp", 32, 51200, 1, 0, 0.8f, 16},
        TestCase{"topp", 32, 51200, 1, 0, 1.0f, 16},
        TestCase{"topk_topp", 6, 4, 1, 1, 0.8f, 16},
        TestCase{"topk_topp", 6, 4, 1, 4, 1.0f, 16},
        TestCase{"topk_topp", 6, 51200, 1, 31, 0.8f, 16},
        TestCase{"topk_topp", 32, 51200, 1, 63, 0.8f, 16},
        TestCase{"topk_topp", 32, 51200, 1, 64, 1.0f, 16},
    };

    for (auto& tc : test_cases) {
        testCumLogProbComputation<float>(tc);
        testCumLogProbComputation<half>(tc);
    }
lvhan028's avatar
lvhan028 committed
1498
    TM_LOG_INFO("testCumLogProbComputation done");
Li Zhang's avatar
Li Zhang committed
1499
1500
1501
1502
1503

    SamplingDecodeTest<float> sampling_decode_test;
    sampling_decode_test.testAll();

    testCuandBatchInitialize(127);
lvhan028's avatar
lvhan028 committed
1504
    TM_LOG_INFO("testCuandBatchInitialize done");
Li Zhang's avatar
Li Zhang committed
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517

#define LAUNCH_VARIANTS(T, tc, local_batch)                                                                            \
    testSamplingLayerCurandInit<T, true, false, local_batch>(tc);                                                      \
    testSamplingLayerCurandInit<T, true, true, local_batch>(tc);                                                       \
    testSamplingLayerCurandInit<T, false, false, local_batch>(tc);                                                     \
    testSamplingLayerCurandInit<T, false, true, local_batch>(tc);
    for (auto& tc : test_cases) {
        LAUNCH_VARIANTS(float, tc, false);  // without local batch
        LAUNCH_VARIANTS(half, tc, false);
        LAUNCH_VARIANTS(float, tc, true);  // with local batch
        LAUNCH_VARIANTS(half, tc, true);
    }
#undef LAUNCH_VARIANTS
lvhan028's avatar
lvhan028 committed
1518
    TM_LOG_INFO("testSamplingLayerCurandInit done");
Li Zhang's avatar
Li Zhang committed
1519
1520
1521

    return 0;
}