test_gpt_kernels.cu 14.3 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
#include <vector>
#include <random>

lvhan028's avatar
lvhan028 committed
4
5
#include "src/turbomind/kernels/gpt_kernels.h"
#include "src/turbomind/utils/memory_utils.h"
Li Zhang's avatar
Li Zhang committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

#include "unittest_utils.h"

int test_find_context_dups();
int test_compact();
int test_uncompact();

int main(int argc, char* argv[])
{
    bool all_passed = true;
    bool passed;

    passed = test_find_context_dups() == EXIT_SUCCESS;
    all_passed |= passed;
    printf("%s", passed ? "." : "X");
    if (!passed) {
        puts("\ntest_find_context_dups: FAILED");
    }

    passed = test_compact() == EXIT_SUCCESS;
    all_passed |= passed;
    printf("%s", passed ? "." : "X");
    if (!passed) {
        puts("\ntest_compact: FAILED");
    }

    passed = test_uncompact() == EXIT_SUCCESS;
    all_passed |= passed;
    printf("%s", passed ? "." : "X");
    if (!passed) {
        puts("\ntest_uncompact: FAILED");
    }

    puts("");
    return all_passed ? EXIT_SUCCESS : EXIT_FAILURE;
}

int test_find_context_dups()
{
    const size_t vec_size = 1234;
    const size_t batch_size = 8;
    // Reference to the first unique vector
    const std::vector<int> shared_contexts_ref {0, 0, 2, 3, 4, 4, 3, 3};

    // Which compact index belong to what vector
    const std::vector<int> batch_idx_to_compact_idx {0, 0, 1, 2, 3, 3, 2, 2};
    std::vector<int> batch_idx_to_compact_idx_test(batch_size);

    // Reverse map of batch_idx_to_compact_idx
    const std::vector<int> compact_idx_to_batch_idx {0, 2, 3, 4, -1, -1, -1, -1};
    std::vector<int> compact_idx_to_batch_idx_test(batch_size, -1);

    std::vector<int> input_ids;
    std::vector<int> default_vector(vec_size, 0);

    for (size_t i = 0; i < batch_size; ++i) {
        default_vector[vec_size - 1] = shared_contexts_ref[i];
        input_ids.insert(input_ids.end(), default_vector.begin(), default_vector.end());
    }

    std::vector<int> shared_contexts_test(batch_size);

    int* d_input_ids;
    int* d_shared_contexts_test;
    int* d_batch_idx_to_compact_idx;
    int* d_compact_to_batch;
    int* d_compact_size;
    cudaMalloc(&d_input_ids, batch_size * vec_size * sizeof(int));
    cudaMalloc(&d_shared_contexts_test, batch_size * sizeof(int));
    cudaMalloc(&d_batch_idx_to_compact_idx, batch_size * sizeof(int));
    cudaMalloc(&d_compact_to_batch, batch_size * sizeof(int));
    cudaMalloc(&d_compact_size, sizeof(int));

    cudaH2Dcpy(d_input_ids, input_ids.data(), batch_size * vec_size);
    cudaH2Dcpy(d_compact_to_batch, compact_idx_to_batch_idx_test.data(), batch_size);

    invokeFindContextDups(d_shared_contexts_test,
            d_batch_idx_to_compact_idx,
            d_compact_to_batch,
            d_compact_size,
            d_input_ids,
            batch_size,
            vec_size);

    int compact_size;
    cudaD2Hcpy(shared_contexts_test.data(), d_shared_contexts_test, batch_size);
    cudaD2Hcpy(batch_idx_to_compact_idx_test.data(), d_batch_idx_to_compact_idx, batch_size);
    cudaD2Hcpy(compact_idx_to_batch_idx_test.data(), d_compact_to_batch, batch_size);
    cudaD2Hcpy(&compact_size, d_compact_size, 1);

    cudaFree(d_input_ids);
    cudaFree(d_shared_contexts_test);

    EXPECT_TRUE(shared_contexts_test == shared_contexts_ref);
    EXPECT_TRUE(batch_idx_to_compact_idx == batch_idx_to_compact_idx_test);
    EXPECT_TRUE(compact_idx_to_batch_idx_test == compact_idx_to_batch_idx);
    EXPECT_TRUE(compact_size == 4);

    return EXIT_SUCCESS;
}

int test_compact()
{
    size_t batch_size = 128;
    size_t compact_size = 5;
    size_t seq_len = 40;
    size_t hidden_dimension = 8;
    auto generator_f = std::bind(std::uniform_real_distribution<float>(-1.0, 1.0), std::mt19937());
    auto generator_i = std::bind(std::uniform_int_distribution<int>(0, 128), std::mt19937());

    // decoder_input [batch_size, seq_len, hidden_dimension] ->
    // compact_decoder_input [compact_size, seq_len, hidden_dimension]
    std::vector<float> decoder_input(batch_size * seq_len * hidden_dimension);
    std::vector<float> compact_decoder_input(compact_size * seq_len * hidden_dimension);
    std::generate(decoder_input.begin(), decoder_input.end(), generator_f);
    float *d_decoder_input, *d_compact_decoder_input;
    cudaMalloc(&d_decoder_input, decoder_input.size() * sizeof(float));
    cudaMalloc(&d_compact_decoder_input, compact_decoder_input.size() * sizeof(float));
    cudaH2Dcpy(d_decoder_input, decoder_input.data(), decoder_input.size());

    // attention_mask [batch_size, seq_len, seq_len] ->
    // compact_attention_mask [compact_size, seq_len, seq_len]
    std::vector<float> attention_mask(batch_size * seq_len * seq_len);
    std::vector<float> compact_attention_mask(compact_size * seq_len * seq_len);
    std::generate(attention_mask.begin(), attention_mask.end(), generator_f);
    float *d_attention_mask, *d_compact_attention_mask;
    cudaMalloc(&d_attention_mask, attention_mask.size() * sizeof(float));
    cudaMalloc(&d_compact_attention_mask, compact_attention_mask.size() * sizeof(float));
    cudaH2Dcpy(d_attention_mask, attention_mask.data(), attention_mask.size());

    // input_lengths [batch_size] -> compact_input_lengths [compact_size]
    std::vector<int> input_lengths(batch_size);
    std::vector<int> compact_input_lengths(compact_size);
    std::generate(input_lengths.begin(), input_lengths.end(), generator_i);
    int *d_input_lengths, *d_compact_input_lengths;
    cudaMalloc(&d_input_lengths, input_lengths.size() * sizeof(int));
    cudaMalloc(&d_compact_input_lengths, compact_input_lengths.size() * sizeof(int));
    cudaH2Dcpy(d_input_lengths, input_lengths.data(), input_lengths.size());

    // compact_idx [compact_size]
    /* std::vector<int> compact_idx {0, 3}; */
    std::vector<int> compact_idx {0, 29, 42, 44, 100};
    int *d_compact_idx;
    cudaMalloc(&d_compact_idx, compact_idx.size() * sizeof(int));
    cudaH2Dcpy(d_compact_idx, compact_idx.data(), compact_idx.size());

    invokeCompactInputs<float>(d_compact_decoder_input,
                               d_compact_attention_mask,
                               d_compact_input_lengths,
                               d_decoder_input,
                               d_attention_mask,
                               d_input_lengths,
                               d_compact_idx,
                               compact_size,
                               seq_len,
                               hidden_dimension);

    cudaD2Hcpy(compact_decoder_input.data(), d_compact_decoder_input, compact_decoder_input.size());
    cudaD2Hcpy(compact_attention_mask.data(), d_compact_attention_mask, compact_attention_mask.size());
    cudaD2Hcpy(compact_input_lengths.data(), d_compact_input_lengths, compact_input_lengths.size());

    for (size_t i = 0; i < compact_size; i++) {
        for (size_t t = 0; t < seq_len; t++) {
            for (size_t h = 0; h < hidden_dimension; h++) {
                EXPECT_TRUE(compact_decoder_input[(i * seq_len + t) * hidden_dimension + h] ==
                            decoder_input[(compact_idx[i] * seq_len + t) * hidden_dimension + h]);
            }
        }
    }

    for (size_t i = 0; i < compact_size; i++) {
        for (size_t t1 = 0; t1 < seq_len; t1++) {
            for (size_t t2 = 0; t2 < seq_len; t2++) {
                EXPECT_TRUE(compact_attention_mask[(i * seq_len + t1) * seq_len + t2] ==
                            attention_mask[(compact_idx[i] * seq_len + t1) * seq_len + t2]);
            }
        }
    }

    for (size_t i = 0; i < compact_size; i++) {
        EXPECT_TRUE(compact_input_lengths[i] == input_lengths[compact_idx[i]]);
    }

    cudaFree(d_decoder_input);
    cudaFree(d_compact_decoder_input);
    cudaFree(d_attention_mask);
    cudaFree(d_compact_attention_mask);
    cudaFree(d_input_lengths);
    cudaFree(d_compact_input_lengths);
    cudaFree(d_compact_idx);

    return EXIT_SUCCESS;
}

int test_uncompact()
{
    // compact_decoder_outputs [compact_size, seq_len, hidden_dimension] ->
    // decoder_outputs [batch_size, seq_len, hidden_dimension]
    size_t batch_size = 128;
    size_t compact_size = 6;
    size_t local_batch_size = compact_size / 2;
    size_t seq_len = 40;
    size_t max_seq_len = 60;
    size_t hidden_dimension = 8;
    size_t num_layer = 2;
    size_t num_head = 2;
    size_t size_per_head = 4;
    auto generator_f = std::bind(std::uniform_real_distribution<float>(-1.0, 1.0), std::mt19937());
    auto generator_i = std::bind(std::uniform_int_distribution<int>(0, compact_size - 1), std::mt19937());

    std::vector<float> compact_decoder_outputs(compact_size * seq_len * hidden_dimension);
    std::vector<float> decoder_outputs(batch_size * seq_len * hidden_dimension);
    std::vector<float> k_cache_compact(num_layer * compact_size * num_head * size_per_head * seq_len);
    std::vector<float> v_cache_compact(num_layer * compact_size * num_head * seq_len * size_per_head);
    std::vector<float> k_cache_out(num_layer * batch_size * num_head * size_per_head * max_seq_len);
    std::vector<float> v_cache_out(num_layer * batch_size * num_head * max_seq_len * size_per_head);

    std::generate(compact_decoder_outputs.begin(), compact_decoder_outputs.end(), generator_f);
    std::generate(k_cache_compact.begin(), k_cache_compact.end(), generator_f);
    std::generate(v_cache_compact.begin(), v_cache_compact.end(), generator_f);

    std::vector<int> batch_to_compact_idx(batch_size);
    std::generate(batch_to_compact_idx.begin(), batch_to_compact_idx.end(), generator_i);

    float *d_compact_decoder_outputs, *d_decoder_outputs, *d_k_cache, *d_v_cache;
    float *d_k_cache_compact, *d_v_cache_compact;

    cudaMalloc(&d_compact_decoder_outputs, compact_decoder_outputs.size() * sizeof(float));
    cudaH2Dcpy(d_compact_decoder_outputs, compact_decoder_outputs.data(), compact_decoder_outputs.size());

    cudaMalloc(&d_k_cache_compact, k_cache_compact.size() * sizeof(float));
    cudaMalloc(&d_v_cache_compact, v_cache_compact.size() * sizeof(float));
    cudaH2Dcpy(d_k_cache_compact, k_cache_compact.data(), k_cache_compact.size());
    cudaH2Dcpy(d_v_cache_compact, v_cache_compact.data(), v_cache_compact.size());

    cudaMalloc(&d_k_cache, k_cache_out.size() * sizeof(float));
    cudaMalloc(&d_v_cache, v_cache_out.size() * sizeof(float));
    cudaMemset(d_k_cache, 0, k_cache_out.size() * sizeof(float));
    cudaMemset(d_v_cache, 0, v_cache_out.size() * sizeof(float));

    cudaMalloc(&d_decoder_outputs, decoder_outputs.size() * sizeof(float));

    int *d_batch_to_compact_idx;
    cudaMalloc(&d_batch_to_compact_idx, batch_to_compact_idx.size() * sizeof(int));
    cudaH2Dcpy(d_batch_to_compact_idx, batch_to_compact_idx.data(), batch_to_compact_idx.size());

    const size_t cache_stride_dst = max_seq_len * hidden_dimension;
    const size_t cache_stride_src = seq_len * hidden_dimension;
    for (size_t ite = 0; ite < (batch_size / local_batch_size); ite++) {
        for (size_t l = 0; l < num_layer; l++) {

            const float *k_cache_offset = d_k_cache_compact + (l * compact_size + ite * local_batch_size) * cache_stride_src;
            const float *v_cache_offset = d_v_cache_compact + (l * compact_size + ite * local_batch_size) * cache_stride_src;

            invokeUnCompactCaches(d_k_cache + l * batch_size * cache_stride_dst,
                                  d_v_cache + l * batch_size * cache_stride_dst,
                                  k_cache_offset,
                                  v_cache_offset,
                                  d_batch_to_compact_idx,
                                  batch_size,
                                  num_head,
                                  max_seq_len,
                                  seq_len,
                                  size_per_head,
                                  local_batch_size,
                                  ite);
        }
    }

    invokeUnCompactOutputs(d_decoder_outputs,
                           d_compact_decoder_outputs,
                           d_batch_to_compact_idx,
                           batch_size,
                           cache_stride_src);

    cudaD2Hcpy(decoder_outputs.data(), d_decoder_outputs, decoder_outputs.size());
    cudaD2Hcpy(k_cache_out.data(), d_k_cache, k_cache_out.size());
    cudaD2Hcpy(v_cache_out.data(), d_v_cache, v_cache_out.size());

    for (size_t i = 0; i < batch_size; i++) {
        for (size_t t = 0; t < seq_len; t++) {
            for (size_t h = 0; h < hidden_dimension; h++) {
                EXPECT_TRUE(decoder_outputs[(i * seq_len + t) * hidden_dimension] ==
                            compact_decoder_outputs[(batch_to_compact_idx[i] * seq_len + t) * hidden_dimension]);
            }
        }
    }

    size_t x_size = (16 / sizeof(float));
    for (size_t l = 0; l < num_layer; l++) {
        for (size_t i = 0; i < batch_size; i++) {
            for (size_t h = 0; h < num_head; h++) {
                for (size_t dh = 0; dh < size_per_head / x_size; dh++) {
                    for (size_t t = 0; t < seq_len; t++) {
                        for (size_t x = 0; x < x_size; x++) {
                            auto src = batch_to_compact_idx[i];
                            EXPECT_TRUE(
                                    k_cache_out[((((l * batch_size + i  ) * num_head + h) * (size_per_head / x_size) + dh) *
                                        max_seq_len + t) * x_size + x] ==
                                    k_cache_compact[((((l * compact_size + src) * num_head + h) * (size_per_head / x_size) + dh) *
                                        seq_len + t) * x_size + x]);
                        }
                    }
                }
            }
        }
    }

    for (size_t l = 0; l < num_layer; l++) {
        for (size_t i = 0; i < batch_size; i++) {
            for (size_t h = 0; h < num_head; h++) {
                for (size_t t = 0; t < seq_len; t++) {
                    for (size_t dh = 0; dh < size_per_head; dh++) {
                        auto src = batch_to_compact_idx[i];
                        EXPECT_TRUE(
                                v_cache_out[(((l * batch_size + i  ) * num_head + h) * max_seq_len + t) * size_per_head + dh] ==
                                v_cache_compact[(((l * compact_size + src) * num_head + h) * seq_len + t) * size_per_head + dh]);
                    }
                }
            }
        }
    }

    cudaFree(d_compact_decoder_outputs);
    cudaFree(d_k_cache_compact);
    cudaFree(d_v_cache_compact);
    cudaFree(d_k_cache);
    cudaFree(d_v_cache);
    cudaFree(d_decoder_outputs);
    cudaFree(d_batch_to_compact_idx);

    return EXIT_SUCCESS;
}