test_gemm.cu 37.4 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
#include <assert.h>
#include <math.h>
#include <cublas_v2.h>
#include <numeric>
#include <stdexcept>
#include <tuple>
#include <vector>

lvhan028's avatar
lvhan028 committed
9
10
11
12
13
14
15
#include "src/turbomind/layers/DenseWeight.h"
#include "src/turbomind/utils/allocator.h"
#include "src/turbomind/utils/cublasMMWrapper.h"
#include "src/turbomind/utils/cuda_utils.h"
#include "src/turbomind/utils/gemm.h"
#include "src/turbomind/utils/logger.h"
#include "src/turbomind/utils/memory_utils.h"
Li Zhang's avatar
Li Zhang committed
16

lvhan028's avatar
lvhan028 committed
17
using namespace turbomind;
Li Zhang's avatar
Li Zhang committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

// Can be replaced by the function provided by a test framework

class TestFailureError : public std::exception {
private:
    std::string msg_;
public:
    explicit TestFailureError() = default;
    explicit TestFailureError(std::string name, std::string msg = "") {
        msg_ = fmtstr("TEST FAIL [%s] %s", name.c_str(), msg.c_str());
    }
    const char* what () const throw () {
        return msg_.c_str();
    }
};

#define EXPECT_TRUE(cond)                           \
    do { if(!(cond)) {                              \
lvhan028's avatar
lvhan028 committed
36
        TM_LOG_ERROR("TEST FAIL [%s] at %s:%d",     \
Li Zhang's avatar
Li Zhang committed
37
38
39
40
41
42
43
44
                     __func__, __FILE__, __LINE__); \
        throw TestFailureError(__func__);           \
    } } while(false)

#define EXPECT_ALMOST_EQUAL(name, dtype, ctype, out, ref)       \
    do {                                                        \
        bool is_ok = checkResult<dtype,ctype>(name, out, ref);  \
        if(!is_ok) {                                            \
lvhan028's avatar
lvhan028 committed
45
            TM_LOG_ERROR("TEST FAIL [%s] at %s:%d",             \
Li Zhang's avatar
Li Zhang committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
                        __func__, __FILE__, __LINE__);          \
            throw TestFailureError(__func__);                   \
        }                                                       \
    } while(false)

////////////////////////////////////////////////////////////////////////////////////

// TensorWrapper is to handle a tensor object as well as its memory buffer,
// because tensor.data is const we cannot set values.
class TensorWrapper {
private:
    IAllocator* allocator;

public:
    std::vector<size_t> shape;
    DataType type;
    Tensor* tensor;
    void* data;

    TensorWrapper(IAllocator* allocator, DataType dtype, std::vector<size_t> shape, bool zero_init = false)
    {
        this->allocator = allocator;
        this->type = dtype;
        this->shape = shape;

        size_t tensor_memsize = this->memsize();
        this->data = this->allocator->malloc(tensor_memsize, false);
        if (zero_init) {
            check_cuda_error(cudaMemset(data, 0x0, tensor_memsize));
        } else {
            setRandomValues();
        }
        this->tensor = new Tensor(MEMORY_GPU, dtype, shape, data);
    }

    TensorWrapper(TensorWrapper const& other)
        : allocator(other.allocator), shape(other.shape), type(other.type), data(other.data), tensor(other.tensor)
    {
lvhan028's avatar
lvhan028 committed
84
        TM_LOG_DEBUG("TensorWrapper copy: this=%p other=%p", data, other.data);
Li Zhang's avatar
Li Zhang committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    }
    ~TensorWrapper()
    {
        delete tensor;
        allocator->free((void**)(&data));
    }

    void setInvalidValues()
    {
        size_t type_size = tensor->type == TYPE_FP32 ? sizeof(float) : sizeof(half);
        size_t tensor_size = type_size * tensor->size();
        // Fill by a random number to guarantee invalid values
        check_cuda_error(cudaMemset(data, 0xdc, tensor_size));
    }

    void setRandomValues() {
        // random initialization
        size_t num_elements = this->size();
        switch (this->type) {
            case TYPE_FP32:
                cudaRandomUniform((float*)data, num_elements);
                break;
            case TYPE_FP16:
                cudaRandomUniform((half*)data, num_elements);
                break;
            default:
                // Will be added more if needed.
                throw std::runtime_error("Not supported data type");
        }
    }

    size_t size() {
        size_t n_elements = 1;
        for (size_t s : this->shape) {
            n_elements *= s;
        }
        return n_elements;
    }

    size_t memsize() {
        size_t type_size = 0;
        switch (this->type) {
            case TYPE_FP32:
                type_size = sizeof(float);
                break;
            case TYPE_FP16:
                type_size = sizeof(half);
                break;
            default:
                throw std::runtime_error("Not supported data type.");
        }
        return type_size * this->size();
    }
};

template<DataType computeType>
void computeReference(GemmOp transa,
                      GemmOp transb,
                      TensorWrapper& C,
                      TensorWrapper& A,
                      TensorWrapper& B,
                      float alpha = 1.0f,
                      float beta = 0.0f)
{
    size_t m = C.shape[0];
    size_t n = C.shape[1];
    size_t k = A.shape[1];

    size_t lda = (transa == GEMM_OP_N) ? k : m;
    size_t ldb = (transb == GEMM_OP_N) ? n : k;
    size_t ldc = n;

    cudaDataType_t atype = (A.type == TYPE_FP16) ? CUDA_R_16F : CUDA_R_32F;
    cudaDataType_t btype = (B.type == TYPE_FP16) ? CUDA_R_16F : CUDA_R_32F;
    cudaDataType_t ctype = (C.type == TYPE_FP16) ? CUDA_R_16F : CUDA_R_32F;
    cudaDataType_t compute_type = (computeType == TYPE_FP16) ? CUDA_R_16F : CUDA_R_32F;

    cublasHandle_t cublas_handle;
    check_cuda_error(cublasCreate(&cublas_handle));

    half h_alpha = (half)alpha;
    half h_beta = (half)beta;
    const void* _alpha = (computeType == TYPE_FP16) ? (const void*)&h_alpha : (const void*)&alpha;
    const void* _beta = (computeType == TYPE_FP16) ? (const void*)&h_beta : (const void*)&beta;

    check_cuda_error(cublasGemmEx(cublas_handle,
                                  getCublasOperation(transb),
                                  getCublasOperation(transa),
                                  n, m, k,
                                  _alpha,
                                  (const void*)B.data, btype, ldb,
                                  (const void*)A.data, atype, lda,
                                  _beta,
                                  (void*)C.data, ctype, ldc,
                                  compute_type,
                                  CUBLAS_GEMM_DEFAULT));
    check_cuda_error(cublasDestroy(cublas_handle));
    cudaDeviceSynchronize();
}

bool almostEqual(float a, float b, float atol = 1e-5, float rtol = 1e-8)
{
    // Params: a = value to compare and b = reference
    // This function follows implementation of numpy.isclose(), which checks
    //   abs(a - b) <= (atol + rtol * abs(b)).
    // Note that the inequality above is asymmetric where b is considered as
    // a reference value. To account into both absolute/relative errors, it
    // uses absolute tolerance and relative tolerance at the same time. The
    // default values of atol and rtol borrowed from numpy.isclose(). For the
    // case of nan value, the result will be true.
    if (isnan(a) && isnan(b)) {
        return true;
    }
    return fabs(a - b) <= (atol + rtol * fabs(b));
}

template<typename T>
bool _checkResult(std::string name, TensorWrapper& out, TensorWrapper& ref, float atol, float rtol) {
    assert(out.type == ref.type);

    size_t out_size = out.size();
    size_t ref_size = ref.size();
    T* h_out = reinterpret_cast<T*>(malloc(sizeof(T) * out_size));
    T* h_ref = reinterpret_cast<T*>(malloc(sizeof(T) * ref_size));

    cudaMemcpy(h_out, out.data, sizeof(T) * out_size, cudaMemcpyDeviceToHost);
    cudaMemcpy(h_ref, ref.data, sizeof(T) * ref_size, cudaMemcpyDeviceToHost);
    cudaDeviceSynchronize();

    size_t failures = 0;
    for (size_t i = 0; i < out_size; ++i) {
        // The values for the output and the reference.
        float a = (float)h_out[i];
        float b = (float)h_ref[i];

        bool ok = almostEqual(a, b, atol, rtol);
        // Print the error.
        if( !ok && failures < 4 ) {
lvhan028's avatar
lvhan028 committed
223
224
225
226
227
            TM_LOG_ERROR(">> invalid result for i=%lu:", i);
            TM_LOG_ERROR(">>    found......: %10.6f", a);
            TM_LOG_ERROR(">>    expected...: %10.6f", b);
            TM_LOG_ERROR(">>    error......: %.6f", fabsf(a - b));
            TM_LOG_ERROR(">>    tol........: %.6f", atol + rtol * fabs(b));
Li Zhang's avatar
Li Zhang committed
228
229
230
231
232
233
234
235
        }

        // Update the number of failures.
        failures += ok ? 0 : 1;
    }

    // Allow not matched up to 1% elements.
    size_t tol_failures = (size_t)(0.01 * out_size);
lvhan028's avatar
lvhan028 committed
236
    TM_LOG_INFO("check....... %30s : %s (failures: %.2f%% atol: %.2e rtol: %.2e)",
Li Zhang's avatar
Li Zhang committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
                name.c_str(), failures <= tol_failures ? "OK" : "FAILED",
                100. * failures / out_size, atol, rtol);
    return failures <= tol_failures;
}

template<typename T, DataType computeType>
bool checkResult(std::string name, TensorWrapper& out, TensorWrapper& ref) {
    float atol = (computeType == TYPE_FP32) ? 1e-6f : 1e-3f;
    float rtol = (computeType == TYPE_FP32) ? 1e-4f : 1e-1f;
    bool is_ok = false;
    if (sizeof(T) == 4) {
        is_ok = _checkResult<float>(name, out, ref, atol, rtol);
    } else {
        is_ok = _checkResult<half>(name, out, ref, atol, rtol);
    }
    return is_ok;
}

template<typename T, DataType computeType>
bool checkResult(TensorWrapper& out, TensorWrapper& ref) {
    return checkResult<T, computeType>("", out, ref);
}

template<typename T>
std::string toString() {
    std::string str = "dtype=";
    str += std::is_same<T, float>::value ? "FP32" : "FP16";
    return str;
}

template<typename T, DataType ctype>
std::string toString() {
    std::string str = "dtype=";
    str += std::is_same<T, float>::value ? "FP32" : "FP16";
    str += ", compute_type=";
    str += (ctype == TYPE_FP32) ? "FP32" : "FP16";
    return str;
}

std::string toString(GemmOp op) {
    return op == GEMM_OP_N ? "N" : "T";
}

struct GemmOpPair {
    GemmOp transa;
    GemmOp transb;
};

static const std::vector<GemmOpPair> op_pairs {{GEMM_OP_N, GEMM_OP_N},
                                               {GEMM_OP_N, GEMM_OP_T},
                                               {GEMM_OP_T, GEMM_OP_N},
                                               {GEMM_OP_T, GEMM_OP_T}};

static inline std::string getTestName(const char* func_name, GemmOp transa, GemmOp transb,
                                      size_t m, size_t n, size_t k)
{
    return fmtstr("%s [opA=%s, opB=%s, m=%ld, n=%ld, k=%ld]",
                  func_name, getGemmOpString(transa).c_str(), getGemmOpString(transb).c_str(),
                  m, n, k);
}

static inline std::string getTestName(const char* func_name, GemmOpPair op_pairs,
                                      size_t m, size_t n, size_t k)
{
    return getTestName(func_name, op_pairs.transa, op_pairs.transb, m, n, k);
}


/////////////////////////////////// Unittests //////////////////////////////////////////

template<typename T, DataType computeType>
void testGemmCorrectnessMatmul(size_t m, size_t n, size_t k) {
lvhan028's avatar
lvhan028 committed
309
    TM_LOG_INFO("Matmul function correctness test [m=%ld, n=%ld, k=%ld, %s]",
Li Zhang's avatar
Li Zhang committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
                m, n, k, toString<T, computeType>().c_str());
    cudaStream_t stream;
    check_cuda_error(cudaStreamCreate(&stream));

    Allocator<AllocatorType::CUDA> allocator(getDevice());

    DataType dtype = getTensorType<T>();
    TensorWrapper a_tensor(&allocator, dtype, {m, k}, false);
    TensorWrapper b_tensor(&allocator, dtype, {k, n}, false);
    TensorWrapper c_tensor(&allocator, dtype, {m, n}, true);
    TensorWrapper expected(&allocator, dtype, {m, n}, true);

    std::shared_ptr<Gemm> gemm = createGemm(&allocator, stream, false, false);
    gemm->setTypes(a_tensor.type, b_tensor.type, c_tensor.type, computeType);

    for (auto &op_pair : op_pairs) {
        std::string tc_name = getTestName(__func__, op_pair, m, n, k);
lvhan028's avatar
lvhan028 committed
327
        TM_LOG_DEBUG(tc_name);
Li Zhang's avatar
Li Zhang committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        computeReference<computeType>(op_pair.transa, op_pair.transb,
                                      expected, a_tensor, b_tensor);

        size_t lda = (op_pair.transa == GEMM_OP_N) ? k : m;
        size_t ldb = (op_pair.transb == GEMM_OP_N) ? n : k;
        size_t ldc = n;

        c_tensor.setInvalidValues(); // to guarantee C has invalid data
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                   a_tensor.data, a_tensor.type, lda,
                   b_tensor.data, b_tensor.type, ldb,
                   c_tensor.data, c_tensor.type, ldc);
        EXPECT_ALMOST_EQUAL(tc_name + " api1", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                   a_tensor.data, lda,
                   b_tensor.data, ldb,
                   c_tensor.data, ldc);
        EXPECT_ALMOST_EQUAL(tc_name + " api2", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                   a_tensor.data, b_tensor.data, c_tensor.data);
        EXPECT_ALMOST_EQUAL(tc_name + " api3", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                    a_tensor.data, DenseWeight<T>{(const T*)b_tensor.data, nullptr, nullptr}, c_tensor.data);
        EXPECT_ALMOST_EQUAL(tc_name + " api4", T, computeType, c_tensor, expected);
    }
    check_cuda_error(cudaStreamDestroy(stream));
}

template<typename T, DataType computeType>
void testGemmConsistencyMatmul(size_t m, size_t n, size_t k) {
    // Test if Gemm is consistent with cublasWrapper
lvhan028's avatar
lvhan028 committed
365
    TM_LOG_INFO("Matmul function consistency test [m=%ld, n=%ld, k=%ld, %s]",
Li Zhang's avatar
Li Zhang committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
                m, n, k, toString<T, computeType>().c_str());

    Allocator<AllocatorType::CUDA> allocator(getDevice());
    cudaStream_t stream;
    check_cuda_error(cudaStreamCreate(&stream));

    DataType dtype = getTensorType<T>();
    TensorWrapper a_tensor(&allocator, dtype, {m, k}, false);
    TensorWrapper b_tensor(&allocator, dtype, {k, n}, false);
    TensorWrapper c_tensor(&allocator, dtype, {m, n}, true);
    TensorWrapper expected(&allocator, dtype, {m, n}, true);

    cublasHandle_t cublas_handle;
    cublasLtHandle_t cublaslt_handle;
    check_cuda_error(cublasCreate(&cublas_handle));
    check_cuda_error(cublasLtCreate(&cublaslt_handle));
    check_cuda_error(cublasSetStream(cublas_handle, stream));
    cublasAlgoMap cublas_algo_map(GEMM_CONFIG);
    std::mutex* cublas_wrapper_mutex = new std::mutex();
    cublasMMWrapper cublas_wrapper(cublas_handle,
                                   cublaslt_handle,
                                   stream,
                                   &cublas_algo_map,
                                   cublas_wrapper_mutex,
                                   &allocator);

    cudaDataType_t cuda_dtype = std::is_same<float, T>::value ? CUDA_R_32F : CUDA_R_16F;
    cudaDataType_t cuda_ctype = (DataType::TYPE_FP32 == computeType) ? CUDA_R_32F : CUDA_R_16F;
    cublas_wrapper.setGemmConfig(cuda_dtype, cuda_dtype, cuda_dtype, cuda_ctype);

    std::shared_ptr<Gemm> gemm = createGemm(&allocator, stream, false, false);
    gemm->setTypes(a_tensor.type, b_tensor.type, c_tensor.type, computeType);

    for (auto &op_pair : op_pairs) {
        std::string tc_name = getTestName(__func__, op_pair, m, n, k);

        // Switch A/B because Gemm expects column major layout as cublas does.
        size_t lda = (op_pair.transa == GEMM_OP_N) ? k : m;
        size_t ldb = (op_pair.transb == GEMM_OP_N) ? n : k;
        size_t ldc = n;
        cublas_wrapper.Gemm(getCublasOperation(op_pair.transb),
                            getCublasOperation(op_pair.transa),
                            n, m, k,
                            b_tensor.data, ldb,
                            a_tensor.data, lda,
                            expected.data, ldc);

        c_tensor.setInvalidValues(); // to guarantee C has invalid data
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                   a_tensor.data, a_tensor.type, lda,
                   b_tensor.data, b_tensor.type, ldb,
                   c_tensor.data, c_tensor.type, ldc);
        EXPECT_ALMOST_EQUAL(tc_name + " api1", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                   a_tensor.data, lda,
                   b_tensor.data, ldb,
                   c_tensor.data, ldc);
        EXPECT_ALMOST_EQUAL(tc_name + " api2", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                   a_tensor.data, b_tensor.data, c_tensor.data);
        EXPECT_ALMOST_EQUAL(tc_name + " api3", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                    a_tensor.data, DenseWeight<T>{(const T*)b_tensor.data, nullptr, nullptr}, c_tensor.data);
        EXPECT_ALMOST_EQUAL(tc_name + " api4", T, computeType, c_tensor, expected);
    }

    delete cublas_wrapper_mutex;
    check_cuda_error(cublasLtDestroy(cublaslt_handle));
    check_cuda_error(cublasDestroy(cublas_handle));
    check_cuda_error(cudaStreamDestroy(stream));
}

template<typename T, DataType computeType>
void testGemmConsistencyBatchedMatmul(size_t m, size_t n, size_t k) {
    // Test if Gemm is consistent with cublasWrapper
lvhan028's avatar
lvhan028 committed
447
    TM_LOG_INFO("Batched gemm function consistency test [m=%ld, n=%ld, k=%ld, %s]",
Li Zhang's avatar
Li Zhang committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
                m, n, k, toString<T, computeType>().c_str());

    Allocator<AllocatorType::CUDA> allocator(getDevice());
    cudaStream_t stream;
    check_cuda_error(cudaStreamCreate(&stream));

    // batch of in/out tensors
    DataType a_type = getTensorType<T>();
    DataType b_type = getTensorType<T>();
    DataType c_type = getTensorType<T>();
    std::vector<TensorWrapper*> a_tensors;
    std::vector<TensorWrapper*> b_tensors;
    std::vector<TensorWrapper*> c_tensors;
    std::vector<TensorWrapper*> expecteds;
    const size_t batch_size = 3;
    for (size_t i = 0; i < batch_size; ++i) {
        a_tensors.push_back(new TensorWrapper(&allocator, a_type, {m, k}, false));
        b_tensors.push_back(new TensorWrapper(&allocator, b_type, {k, n}, false));
        c_tensors.push_back(new TensorWrapper(&allocator, c_type, {m, n}, true));
        expecteds.push_back(new TensorWrapper(&allocator, c_type, {m, n}, true));
    }

    const T* hA[]{(const T*)a_tensors[0]->data,
                  (const T*)a_tensors[1]->data,
                  (const T*)a_tensors[2]->data,
                  nullptr,  // for memory alignment.
                  (const T*)b_tensors[0]->data,
                  (const T*)b_tensors[1]->data,
                  (const T*)b_tensors[2]->data,
                  nullptr,  // for memory alignment.
                  (const T*)c_tensors[0]->data,
                  (const T*)c_tensors[1]->data,
                  (const T*)c_tensors[2]->data,
                  nullptr,  // for memory alignment.
                  (const T*)expecteds[0]->data,
                  (const T*)expecteds[1]->data,
                  (const T*)expecteds[2]->data};

    T** batch_tensor_ptrs = reinterpret_cast<T**>(allocator.malloc(sizeof(T*) * 16, false));
    check_cuda_error(cudaMemcpyAsync(
        (void*)batch_tensor_ptrs, hA, sizeof(T*) * 16, cudaMemcpyHostToDevice, stream));
    const void* const* batch_a = reinterpret_cast<const void* const*>(batch_tensor_ptrs);
    const void* const* batch_b = reinterpret_cast<const void* const*>(batch_tensor_ptrs + 4);
    void* const* batch_c = reinterpret_cast<void* const*>(batch_tensor_ptrs + 8);
    void* const* batch_expected = reinterpret_cast<void* const*>(batch_tensor_ptrs + 12);

    cublasHandle_t cublas_handle;
    cublasLtHandle_t cublaslt_handle;
    check_cuda_error(cublasCreate(&cublas_handle));
    check_cuda_error(cublasLtCreate(&cublaslt_handle));
    check_cuda_error(cublasSetStream(cublas_handle, stream));
    cublasAlgoMap cublas_algo_map(GEMM_CONFIG);
    std::mutex* cublas_wrapper_mutex = new std::mutex();
    cublasMMWrapper cublas_wrapper(cublas_handle,
                                   cublaslt_handle,
                                   stream,
                                   &cublas_algo_map,
                                   cublas_wrapper_mutex,
                                   &allocator);

    cudaDataType_t dtype = std::is_same<float, T>::value ? CUDA_R_32F : CUDA_R_16F;
    cudaDataType_t ctype = (computeType == DataType::TYPE_FP32) ? CUDA_R_32F : CUDA_R_16F;
    cublas_wrapper.setGemmConfig(dtype, dtype, dtype, ctype);

    std::shared_ptr<Gemm> gemm = createGemm(&allocator, stream, false, false);
    gemm->setTypes(a_type, b_type, c_type, computeType);

    for (auto &op_pair : op_pairs) {
        std::string tc_name = getTestName(__func__, op_pair, m, n, k);
lvhan028's avatar
lvhan028 committed
517
        TM_LOG_DEBUG(tc_name);
Li Zhang's avatar
Li Zhang committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

        size_t lda = (op_pair.transa == GEMM_OP_N) ? k : m;
        size_t ldb = (op_pair.transb == GEMM_OP_N) ? n : k;
        size_t ldc = n;

        // Switch A/B because Gemm expects column major layout as cublas does.
        cublas_wrapper.batchedGemm(getCublasOperation(op_pair.transb),  // N
                                   getCublasOperation(op_pair.transa),  // T
                                   n,
                                   m,
                                   k,
                                   (const void* const*)batch_b, ldb,
                                   (const void* const*)batch_a, lda,
                                   (void* const*)batch_expected, ldc,
                                   batch_size);

        gemm->batchedGemm(op_pair.transa, op_pair.transb, m, n, k,
                          batch_a, a_type, lda,
                          batch_b, b_type, ldb,
                          batch_c, c_type, ldc,
                          batch_size);
        for (size_t i = 0; i < batch_size; ++i) {
            EXPECT_ALMOST_EQUAL(tc_name + " api1 batch" + std::to_string(i),
                                T, computeType, *c_tensors[i], *expecteds[i]);
        }

        for (size_t i = 0; i < batch_size; ++i) {
            c_tensors[i]->setInvalidValues();
        }
        gemm->batchedGemm(op_pair.transa, op_pair.transb, m, n, k,
                          batch_a, lda,
                          batch_b, ldb,
                          batch_c, ldc,
                          batch_size);
        for (size_t i = 0; i < batch_size; ++i) {
            EXPECT_ALMOST_EQUAL(tc_name + " api2 batch" + std::to_string(i),
                                T, computeType, *c_tensors[i], *expecteds[i]);
        }

        for (size_t i = 0; i < batch_size; ++i) {
            c_tensors[i]->setInvalidValues();
        }
        gemm->batchedGemm(op_pair.transa, op_pair.transb, m, n, k,
                          batch_a, batch_b, batch_c, batch_size);
        for (size_t i = 0; i < batch_size; ++i) {
            EXPECT_ALMOST_EQUAL(tc_name + " api3 batch" + std::to_string(i),
                                T, computeType, *c_tensors[i], *expecteds[i]);
        }
    }
    a_tensors.clear();
    b_tensors.clear();
    c_tensors.clear();
    expecteds.clear();
    delete cublas_wrapper_mutex;
    check_cuda_error(cublasLtDestroy(cublaslt_handle));
    check_cuda_error(cublasDestroy(cublas_handle));
    check_cuda_error(cudaStreamDestroy(stream));
}


template<typename T, DataType computeType>
void testGemmConsistencyStridedBatchedMatmul(size_t batch_size, size_t m, size_t n, size_t k) {
    // Test if Gemm is consistent with cublasWrapper
lvhan028's avatar
lvhan028 committed
581
    TM_LOG_INFO("Strided batched gemm function consistency test [bsz=%ld, m=%ld, n=%ld, k=%ld, %s]",
Li Zhang's avatar
Li Zhang committed
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
                batch_size, m, n, k, toString<T, computeType>().c_str());

    Allocator<AllocatorType::CUDA> allocator(getDevice());
    cudaStream_t stream;
    check_cuda_error(cudaStreamCreate(&stream));

    DataType data_type = getTensorType<T>();
    TensorWrapper a_tensor(&allocator, data_type, {batch_size, m, k}, false);
    TensorWrapper b_tensor(&allocator, data_type, {batch_size, k, n}, false);
    TensorWrapper c_tensor(&allocator, data_type, {batch_size, m, n}, true);
    TensorWrapper expected(&allocator, data_type, {batch_size, m, n}, true);

    cublasHandle_t cublas_handle;
    cublasLtHandle_t cublaslt_handle;
    check_cuda_error(cublasCreate(&cublas_handle));
    check_cuda_error(cublasLtCreate(&cublaslt_handle));
    check_cuda_error(cublasSetStream(cublas_handle, stream));
    cublasAlgoMap cublas_algo_map(GEMM_CONFIG);
    std::mutex* cublas_wrapper_mutex = new std::mutex();
    cublasMMWrapper cublas_wrapper(cublas_handle,
                                   cublaslt_handle,
                                   stream,
                                   &cublas_algo_map,
                                   cublas_wrapper_mutex,
                                   &allocator);

    cudaDataType_t dtype = std::is_same<float, T>::value ? CUDA_R_32F : CUDA_R_16F;
    cudaDataType_t ctype = (computeType == DataType::TYPE_FP32) ? CUDA_R_32F : CUDA_R_16F;
    cublas_wrapper.setGemmConfig(dtype, dtype, dtype, ctype);

    std::shared_ptr<Gemm> gemm = createGemm(&allocator, stream, false, false);
    gemm->setTypes(a_tensor.type, b_tensor.type, c_tensor.type, computeType);

    for (auto &op_pair : op_pairs) {
        std::string tc_name = getTestName(__func__, op_pair, m, n, k);

        // Switch A/B because Gemm expects column major layout as cublas does.
        size_t lda = (op_pair.transa == GEMM_OP_N) ? k : m;
        size_t ldb = (op_pair.transb == GEMM_OP_N) ? n : k;
        size_t ldc = n;

        int64_t stridea = m * k;
        int64_t strideb = k * n;
        int64_t stridec = m * n;

        float alpha = 1.0f;
        float beta = 0.0f;

        cublas_wrapper.stridedBatchedGemm(getCublasOperation(op_pair.transb),
                                          getCublasOperation(op_pair.transa),
                                          n,
                                          m,
                                          k,
                                          alpha,
                                          b_tensor.data,
                                          getCublasDataType(b_tensor.type),
                                          ldb,
                                          strideb,
                                          a_tensor.data,
                                          getCublasDataType(a_tensor.type),
                                          lda,
                                          stridea,
                                          beta,
                                          expected.data,
                                          getCublasDataType(expected.type),
                                          ldc,
                                          stridec,
                                          batch_size,
                                          getCublasDataType(computeType));

        c_tensor.setInvalidValues();  // to guarantee C has invalid data
        gemm->stridedBatchedGemm(op_pair.transa, op_pair.transb, m, n, k,
                                 a_tensor.data, a_tensor.type, lda, stridea,
                                 b_tensor.data, b_tensor.type, ldb, strideb,
                                 c_tensor.data, c_tensor.type, ldc, stridec,
                                 batch_size, computeType, alpha, beta);
        EXPECT_ALMOST_EQUAL(tc_name + " api1", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->stridedBatchedGemm(op_pair.transa, op_pair.transb, m, n, k,
                                 a_tensor.data, lda, stridea,
                                 b_tensor.data, ldb, strideb,
                                 c_tensor.data, ldc, stridec,
                                 batch_size, alpha, beta);
        EXPECT_ALMOST_EQUAL(tc_name + " api2", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->stridedBatchedGemm(op_pair.transa, op_pair.transb, m, n, k,
                                 a_tensor.data, stridea,
                                 b_tensor.data, strideb,
                                 c_tensor.data, stridec,
                                 batch_size, alpha, beta);
        EXPECT_ALMOST_EQUAL(tc_name + " api3", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->stridedBatchedGemm(op_pair.transa, op_pair.transb, m, n, k,
                                 a_tensor.data,
                                 b_tensor.data,
                                 c_tensor.data,
                                 batch_size, alpha, beta);
        EXPECT_ALMOST_EQUAL(tc_name + " api4", T, computeType, c_tensor, expected);
    }

    delete cublas_wrapper_mutex;
    check_cuda_error(cublasLtDestroy(cublaslt_handle));
    check_cuda_error(cublasDestroy(cublas_handle));
    check_cuda_error(cudaStreamDestroy(stream));
}

#ifdef SPARSITY_ENABLED
// The current SpGemm only supports TYPE_FP16 for T, computeType,
// but let us keep these template variables for later use.
template<typename T, DataType computeType>
void testSpGemmCorrectnessMatmul(size_t m, size_t n, size_t k) {
lvhan028's avatar
lvhan028 committed
696
    TM_LOG_INFO("Sparse gemm function correctness test [m=%ld, n=%ld, k=%ld, %s]",
Li Zhang's avatar
Li Zhang committed
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
                m, n, k, toString<T, computeType>().c_str());
    cudaStream_t stream;
    check_cuda_error(cudaStreamCreate(&stream));

    Allocator<AllocatorType::CUDA> allocator(getDevice());

    DataType dtype = getTensorType<T>();
    TensorWrapper a_tensor(&allocator, dtype, {m, k}, false);
    TensorWrapper b_tensor(&allocator, dtype, {k, n}, false);
    TensorWrapper c_tensor(&allocator, dtype, {m, n}, true);
    TensorWrapper expected(&allocator, dtype, {m, n}, true);

    std::shared_ptr<Gemm> gemm = createGemm(&allocator, stream, true, false);
    gemm->setTypes(a_tensor.type, b_tensor.type, c_tensor.type, computeType);

    for (auto &op_pair : op_pairs) {
        // A/B will be switched in SpGemm.
        std::string tc_name = getTestName(__func__, op_pair, m, n, k);
lvhan028's avatar
lvhan028 committed
715
        TM_LOG_DEBUG(tc_name);
Li Zhang's avatar
Li Zhang committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

        b_tensor.setRandomValues();
        pruneMatrixB(b_tensor.data, stream,
                     b_tensor.shape[0], b_tensor.shape[1], op_pair.transb);
        computeReference<computeType>(op_pair.transa, op_pair.transb,
                                      expected, a_tensor, b_tensor);

        void* b_compressed;
        compressMatrixB(&b_compressed, allocator, stream,
                        b_tensor.data, b_tensor.shape[0], b_tensor.shape[1],
                        op_pair.transb);

        size_t lda = (op_pair.transa == GEMM_OP_N) ? k : m;
        size_t ldb = (op_pair.transb == GEMM_OP_N) ? n : k;
        size_t ldc = n;

        c_tensor.setInvalidValues(); // to guarantee C has invalid data
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                   a_tensor.data, a_tensor.type, lda,
                   b_compressed, b_tensor.type, ldb,
                   c_tensor.data, c_tensor.type, ldc);
        EXPECT_ALMOST_EQUAL(tc_name + " api1", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                   a_tensor.data, lda,
                   b_compressed, ldb,
                   c_tensor.data, ldc);
        EXPECT_ALMOST_EQUAL(tc_name + " api2", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                   a_tensor.data, b_compressed, c_tensor.data);
        EXPECT_ALMOST_EQUAL(tc_name + " api3", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                   a_tensor.data,
                   DenseWeight<T>{(const T*)b_tensor.data, nullptr, (const T*)b_compressed},
                   c_tensor.data);
        EXPECT_ALMOST_EQUAL(tc_name + " api4", T, computeType, c_tensor, expected);

        allocator.free((void**)(&b_compressed));
    }
    check_cuda_error(cudaStreamDestroy(stream));
}

template<typename T, DataType computeType>
void testSpGemmConsistencyMatmul(size_t m, size_t n, size_t k) {
    // Test if Gemm is consistent with cublasWrapper
lvhan028's avatar
lvhan028 committed
766
    TM_LOG_INFO("Sparse Matmul function consistency test [m=%ld, n=%ld, k=%ld, %s]",
Li Zhang's avatar
Li Zhang committed
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
                m, n, k, toString<T, computeType>().c_str());

    Allocator<AllocatorType::CUDA> allocator(getDevice());
    cudaStream_t stream;
    check_cuda_error(cudaStreamCreate(&stream));

    DataType dtype = getTensorType<T>();
    TensorWrapper a_tensor(&allocator, dtype, {m, k}, false);
    TensorWrapper b_tensor(&allocator, dtype, {k, n}, false);
    TensorWrapper c_tensor(&allocator, dtype, {m, n}, true);
    TensorWrapper expected(&allocator, dtype, {m, n}, true);

    cublasHandle_t cublas_handle;
    cublasLtHandle_t cublaslt_handle;
    check_cuda_error(cublasCreate(&cublas_handle));
    check_cuda_error(cublasLtCreate(&cublaslt_handle));
    check_cuda_error(cublasSetStream(cublas_handle, stream));
    cublasAlgoMap cublas_algo_map(GEMM_CONFIG);
    std::mutex* cublas_wrapper_mutex = new std::mutex();
    cublasMMWrapper cublas_wrapper(cublas_handle,
                                   cublaslt_handle,
                                   stream,
                                   &cublas_algo_map,
                                   cublas_wrapper_mutex,
                                   &allocator);

    cudaDataType_t cu_dtype = std::is_same<float, T>::value ? CUDA_R_32F : CUDA_R_16F;
    cudaDataType_t cu_ctype = (DataType::TYPE_FP32 == computeType) ? CUDA_R_32F : CUDA_R_16F;
    cublas_wrapper.setGemmConfig(cu_dtype, cu_dtype, cu_dtype, cu_ctype);

    std::shared_ptr<Gemm> gemm = createGemm(&allocator, stream, true, false);
    gemm->setTypes(a_tensor.type, b_tensor.type, c_tensor.type, computeType);

    for (auto &op_pair : op_pairs) {
        std::string tc_name = getTestName(__func__, op_pair, m, n, k);
lvhan028's avatar
lvhan028 committed
802
        TM_LOG_DEBUG(tc_name);
Li Zhang's avatar
Li Zhang committed
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

        b_tensor.setRandomValues();
        pruneMatrixB(b_tensor.data, stream,
                     b_tensor.shape[0], b_tensor.shape[1], op_pair.transb);

        // Switch A/B because Gemm expects column major layout as cublas does.
        size_t lda = (op_pair.transa == GEMM_OP_N) ? k : m;
        size_t ldb = (op_pair.transb == GEMM_OP_N) ? n : k;
        size_t ldc = n;
        cublas_wrapper.Gemm(getCublasOperation(op_pair.transb),
                            getCublasOperation(op_pair.transa),
                            n,
                            m,
                            k,
                            b_tensor.data, ldb,
                            a_tensor.data, lda,
                            expected.data, ldc);

        void* b_compressed;
        compressMatrixB(&b_compressed, allocator, stream,
                        b_tensor.data, b_tensor.shape[0], b_tensor.shape[1],
                        op_pair.transb);

        c_tensor.setInvalidValues();  // to guarantee C has invalid data
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                   a_tensor.data, a_tensor.type, lda,
                   b_compressed, b_tensor.type, ldb,
                   c_tensor.data, c_tensor.type, ldc);
        EXPECT_ALMOST_EQUAL(tc_name + " api1", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->gemm(op_pair.transa, op_pair.transb,  m, n, k,
                   a_tensor.data, lda,
                   b_compressed, ldb,
                   c_tensor.data, ldc);
        EXPECT_ALMOST_EQUAL(tc_name + " api1", T, computeType, c_tensor, expected);

        c_tensor.setInvalidValues();
        gemm->gemm(op_pair.transa, op_pair.transb, m, n, k,
                   a_tensor.data, b_compressed, c_tensor.data);
        EXPECT_ALMOST_EQUAL(tc_name + " api3", T, computeType, c_tensor, expected);
    }

    delete cublas_wrapper_mutex;
    check_cuda_error(cublasLtDestroy(cublaslt_handle));
    check_cuda_error(cublasDestroy(cublas_handle));
    check_cuda_error(cudaStreamDestroy(stream));
}
#endif

int main(int argc, char* argv[]) {
    // testGemmCreate();
    using testcase_t = std::tuple<size_t, size_t, size_t>;

    std::vector<testcase_t> testcases = {{16, 32, 64},
                                         {255, 255, 255},
                                         {1041, 2047, 9999},
                                         {1041, 1, 9999},
                                         {1041, 999, 1}};

    // Computation correctness tests
    for (testcase_t &tc : testcases) {
        size_t m = std::get<0>(tc);
        size_t n = std::get<1>(tc);
        size_t k = std::get<2>(tc);

        testGemmCorrectnessMatmul<float, TYPE_FP32>(m, n, k);
        testGemmCorrectnessMatmul<half, TYPE_FP32>(m, n, k);
        testGemmCorrectnessMatmul<half, TYPE_FP16>(m, n, k);

        testGemmConsistencyMatmul<float, TYPE_FP32>(m, n, k);
        testGemmConsistencyMatmul<half, TYPE_FP32>(m, n, k);
        testGemmConsistencyMatmul<half, TYPE_FP16>(m, n, k);

        testGemmConsistencyBatchedMatmul<float, TYPE_FP32>(m, n, k);
        testGemmConsistencyBatchedMatmul<half, TYPE_FP32>(m, n, k);
        testGemmConsistencyBatchedMatmul<half, TYPE_FP16>(m, n, k);

        testGemmConsistencyStridedBatchedMatmul<float, TYPE_FP32>(7, m, n, k);
        testGemmConsistencyStridedBatchedMatmul<half, TYPE_FP32>(7, m, n, k);
        testGemmConsistencyStridedBatchedMatmul<half, TYPE_FP16>(7, m, n, k);
    }

#ifdef SPARSITY_ENABLED
    // Reset for SpGemm test.
    testcases.clear();
    testcases.insert(testcases.end(),
                    {{8, 32, 32},  // minimum possible example.
                     {8, 32, 64},
                     {64, 64, 64},
                     {16, 32, 64},
                     {1024, 32, 1024},
                     {1024, 1024, 32},
                     {16, 1024, 1024},
                     {1024, 1024, 1024}});

    for (testcase_t &tc : testcases) {
        size_t m = std::get<0>(tc);
        size_t n = std::get<1>(tc);
        size_t k = std::get<2>(tc);
        testSpGemmCorrectnessMatmul<half, TYPE_FP16>(m, n, k);
        testSpGemmConsistencyMatmul<half, TYPE_FP16>(m, n, k);
    }
#endif
lvhan028's avatar
lvhan028 committed
907
    TM_LOG_INFO("Test done");
Li Zhang's avatar
Li Zhang committed
908
909
    return 0;
}