gtest_utils.h 7.61 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
#include <algorithm>   // std::fill_n
#include <iostream>    // snprintf
#include <math.h>      // expf, log
#include <stdlib.h>    // rand
#include <string>      // std::string
#include <vector>      // std::vector

#include <cuda_runtime.h>
#include <gtest/gtest.h>

lvhan028's avatar
lvhan028 committed
11
12
13
14
#include "src/turbomind/utils/allocator.h"
#include "src/turbomind/utils/memory_utils.h"
#include "src/turbomind/utils/Tensor.h"
#include "src/turbomind/utils/logger.h"
Li Zhang's avatar
Li Zhang committed
15

lvhan028's avatar
lvhan028 committed
16
namespace ft = turbomind;
Li Zhang's avatar
Li Zhang committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

namespace {

#define EPSILON (1e-20)

bool almostEqual(float a, float b, float atol = 1e-5, float rtol = 1e-8)
{
    // Params: a = value to compare and b = reference
    // This function follows implementation of numpy.isclose(), which checks
    //   abs(a - b) <= (atol + rtol * abs(b)).
    // Note that the inequality above is asymmetric where b is considered as
    // a reference value. To account into both absolute/relative errors, it
    // uses absolute tolerance and relative tolerance at the same time. The
    // default values of atol and rtol borrowed from numpy.isclose(). For the
    // case of nan value, the result will be true.
    if (isnan(a) && isnan(b)) {
        return true;
    }
    return fabs(a - b) <= (atol + rtol * fabs(b));
}

template<typename T>
bool checkResult(std::string name, T* out, T*ref, size_t size, float atol, float rtol) {
    size_t failures = 0;
    float relative_gap = 0.0f;;

    for (size_t i = 0; i < size; ++i) {
        // The values for the output and the reference.
        float a = (float)out[i];
        float b = (float)ref[i];

        bool ok = almostEqual(a, b, atol, rtol);
        // Print the error.
        if (!ok && failures < 4) {
lvhan028's avatar
lvhan028 committed
51
52
53
54
55
            TM_LOG_ERROR(">> invalid result for i=%lu:", i);
            TM_LOG_ERROR(">>    found......: %10.6f", a);
            TM_LOG_ERROR(">>    expected...: %10.6f", b);
            TM_LOG_ERROR(">>    error......: %.6f", fabsf(a - b));
            TM_LOG_ERROR(">>    tol........: %.6f", atol + rtol * fabs(b));
Li Zhang's avatar
Li Zhang committed
56
57
58
59
60
61
62
63
64
65
66
67
        }
        // Update the number of failures.
        failures += ok ? 0 : 1;
        // Update the relative gap.
        relative_gap += fabsf(a - b) / (fabsf(b) + EPSILON);
    }

    relative_gap /= size;

    // Allow not matched up to 1% elements.
    size_t tol_failures = (size_t)(0.01 * size);
    if (failures > tol_failures) {
lvhan028's avatar
lvhan028 committed
68
        TM_LOG_ERROR("%s (failures: %.2f%% atol: %.2e rtol: %.2e rel_gap: %.2e%%)",
Li Zhang's avatar
Li Zhang committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
                     name.c_str(), 100. * failures / size, atol, rtol, 100. * relative_gap);
    }
    return failures <= tol_failures;
}

template<typename T>
bool checkResult(std::string name, T* out, T* ref, size_t size,
                 bool device_out = true, bool device_ref = false)
{
    bool is_fp32 = sizeof(T) == 4;
    float atol = is_fp32 ? 1e-4f : 1e-3f;
    float rtol = is_fp32 ? 1e-2f : 1e-1f;

    T* h_out = nullptr;
    if (device_out) {
        h_out = new T[size];
        cudaMemcpy(h_out, out, sizeof(T) * size, cudaMemcpyDeviceToHost);
        out = h_out;
    }
    T* h_ref = nullptr;
    if (device_ref) {
        h_ref = new T[size];
        cudaMemcpy(h_ref, ref, sizeof(T) * size, cudaMemcpyDeviceToHost);
        ref = h_ref;
    }
    bool is_ok = checkResult(name, out, ref, size, atol, rtol);
    if (h_out != nullptr){
        delete[] h_out;
    }
    if (h_ref != nullptr) {
        delete[] h_ref;
    }
    return is_ok;
}

template<typename T>
void initRandom(T* ptr, size_t size, float minval, float maxval) {
    for (size_t i = 0; i < size; ++i) {
        float val = static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
        val *= (maxval - minval);
        ptr[i] = static_cast<T>(minval + val);
    }
}

void initRandomInt(int* ptr, size_t size, int minval, int maxval) {
    assert(minval < maxval);
    int mod = maxval - minval;
    for (size_t i = 0; i < size; ++i) {
        ptr[i] = minval + rand() % mod;
    }
}

template<typename T>
void tile(T* x, int m, int n) {
    for (int i = 1; i < m; ++i) {
        for (int j = 0; j < n; ++j) {
            x[i * n + j] = x[j];
        }
    }
}

template<typename T>
void tile(T* dst, T* src, int m, int n) {
    for (int i = 1; i < m; ++i) {
        for (int j = 0; j < n; ++j) {
            dst[i * n + j] = src[j];
        }
    }
}

// for the safe arithmetic functions in host.
namespace math {
template<typename T>
inline T add(T a, T b)
{
    return static_cast<T>((float)a + (float)b);
}

template<typename T>
inline T mul(T a, T b)
{
    return static_cast<T>((float)a * (float)b);
}

template<typename T>
inline T fma(T a, T b, T c)
{
    return static_cast<T>((float)a * (float)b + (float)c);
}
}

typedef testing::Types<float, half> FloatAndHalfTypes;
#ifndef ENABLE_BF16
typedef FloatAndHalfTypes SupportTypes;
#else
typedef testing::Types<float, half, __nv_bfloat16> FloatHalfBf16Types;
typedef FloatHalfBf16Types SupportTypes;
#endif

class FtTestBase: public testing::Test {
public:
    void SetUp() override
    {
        int device = 0;
        cudaGetDevice(&device);
        cudaStreamCreate(&stream);
        allocator = new ft::Allocator<ft::AllocatorType::CUDA>(device);
        allocator->setStream(stream);
    }

    void TearDown() override
    {
        // Automatically allocated CPU buffers should be released at the end of a test.
        // We don't need to care GPU buffers allocated by Allocator because they are
        // managed by the allocator.
        for (auto& buffer : allocated_cpu_buffers) {
            free(buffer);
        }
        allocated_cpu_buffers.clear();
        delete allocator;
        cudaStreamDestroy(stream);
    }

protected:
    cudaStream_t                            stream;
    ft::Allocator<ft::AllocatorType::CUDA>* allocator;
    std::vector<void*>                      allocated_cpu_buffers;

    // Utilities to easily handle tensor instances in test cases.

    ft::Tensor createTensor(const ft::MemoryType mtype,
                            const ft::DataType dtype,
                            const std::vector<size_t> shape)
    {
        size_t n_elmts  = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<size_t>());
        size_t buf_size = ft::Tensor::getTypeSize(dtype) * n_elmts;

        void* data = nullptr;
        if (mtype == ft::MEMORY_CPU || mtype == ft::MEMORY_CPU_PINNED) {
            data = malloc(buf_size);
            allocated_cpu_buffers.push_back(data);
        }
        else {
            data = allocator->malloc(buf_size);
        }
        return ft::Tensor(mtype, dtype, shape, data);
    };

    template<typename T>
    ft::Tensor toHost(ft::Tensor& device_tensor)
    {
        if (device_tensor.data == nullptr) {
            return ft::Tensor();
        }
        ft::Tensor host_tensor = createTensor(ft::MEMORY_CPU, device_tensor.type, device_tensor.shape);
        ft::cudaAutoCpy(host_tensor.getPtr<T>(), device_tensor.getPtr<T>(), host_tensor.size(), stream);
        cudaStreamSynchronize(stream);
        return host_tensor;
    };

    template<typename T>
    ft::Tensor toDevice(ft::Tensor& host_tensor)
    {
        if (host_tensor.data == nullptr) {
            return ft::Tensor();
        }
        ft::Tensor device_tensor = createTensor(ft::MEMORY_GPU, host_tensor.type, host_tensor.shape);
        ft::cudaAutoCpy(device_tensor.getPtr<T>(), host_tensor.getPtr<T>(), host_tensor.size(), stream);
        return device_tensor;
    };

    void copyTensor(ft::Tensor& dst, ft::Tensor& src)
    {
        FT_CHECK_WITH_INFO(
            src.sizeBytes() == dst.sizeBytes(),
            ft::fmtstr("src and dst has different size (%ld != %ld)", src.sizeBytes(), dst.sizeBytes()));
        ft::cudaAutoCpy(dst.getPtr<char>(), src.getPtr<char>(), src.sizeBytes(), stream);
        cudaStreamSynchronize(stream);
    }

};

}