cublasFP8MMWrapper.h 6.97 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*
 * Copyright (c) 2022-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "3rdparty/fp8_qgmma_1x1/fp8_qgmma_1x1_utils.h"
#include "cuda_utils.h"
lvhan028's avatar
lvhan028 committed
19
20
21
#include "src/turbomind/utils/cublasAlgoMap.h"
#include "src/turbomind/utils/cublasMMWrapper.h"
#include "src/turbomind/utils/cuda_fp8_utils.h"
Li Zhang's avatar
Li Zhang committed
22
23
24
25
26
27
28
29
30
#include <cublasLt.h>
#include <cublas_v2.h>
#include <cuda_runtime.h>
#include <map>
#include <mutex>
#include <string>

#pragma once

lvhan028's avatar
lvhan028 committed
31
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

class cublasFP8MMWrapper: public cublasMMWrapper {
public:
    cublasFP8MMWrapper(cublasLtHandle_t cublaslt_handle_,
                       cudaStream_t     stream,
                       cublasAlgoMap*   map,
                       std::mutex*      mu,
                       IAllocator*      allocator);

    cublasFP8MMWrapper(cublasHandle_t   cublas_handle,
                       cublasLtHandle_t cublaslt_handle,
                       cudaStream_t     stream,
                       cublasAlgoMap*   map,
                       std::mutex*      mu,
                       IAllocator*      allocator);

    virtual ~cublasFP8MMWrapper();

    cublasFP8MMWrapper(const cublasFP8MMWrapper& wrapper);

    virtual void cublasVersionCheck() override;

    void Gemm(__nv_bfloat16*       res,
              int                  batchCount,
              int                  m,
              int                  n,
              int                  k,
              int64_t              stridea,
              int64_t              strideb,
              int64_t              stridec,
              const float*         alpha,
              const float*         beta,
              const __nv_fp8_e4m3* input,
              const __nv_fp8_e4m3* kernel,
              const float*         input_scale,
              const float*         kernel_scale);

    void Gemm(__nv_bfloat16*       res,
              int                  batchCount,
              int                  m,
              int                  n,
              int                  k,
              int64_t              stridea,
              int64_t              strideb,
              int64_t              stridec,
              const float*         alpha,
              const float*         beta,
              const __nv_fp8_e4m3* input,
              const __nv_fp8_e4m3* kernel,
              const float*         input_scale,
              const float*         kernel_scale,
              cudaStream_t         stream,
              bool                 fastAccum = true);

    void Gemm(__nv_fp8_e4m3*       res,
              int                  batchCount,
              int                  m,
              int                  n,
              int                  k,
              int64_t              stridea,
              int64_t              strideb,
              int64_t              stridec,
              const float*         alpha,
              const float*         beta,
              const __nv_fp8_e4m3* input,
              const __nv_fp8_e4m3* kernel,
              const float*         input_scale,
              const float*         kernel_scale,
              const float*         output_scale);

    void Gemm(__nv_fp8_e4m3*       res,
              int                  batchCount,
              int                  m,
              int                  n,
              int                  k,
              int64_t              stridea,
              int64_t              strideb,
              int64_t              stridec,
              const float*         alpha,
              const float*         beta,
              const __nv_fp8_e4m3* input,
              const __nv_fp8_e4m3* kernel,
              const float*         input_scale,
              const float*         kernel_scale,
              const float*         output_scale,
              cudaStream_t         stream,
              bool                 fastAccum = true);

    template<bool RELU, bool GELU>
    void Conv1x1Gemm(__nv_fp8_e4m3*       res,
                     int                  m,
                     int                  n,
                     int                  k,
                     const __nv_fp8_e4m3* input,
                     const __nv_fp8_e4m3* kernel,
                     const __nv_bfloat16* bias,
                     const float          input_scale,
                     const float          kernel_scale,
                     const float          output_scale,
                     cudaStream_t         stream);

    template<bool RELU, bool GELU>
    void Gemm_Bias_Act(__nv_bfloat16*       res,
                       int                  batchCount,
                       int                  m,
                       int                  n,
                       int                  k,
                       int64_t              stridea,
                       int64_t              strideb,
                       int64_t              stridec,
                       const float*         alpha,
                       const float*         beta,
                       const __nv_fp8_e4m3* input,
                       const __nv_fp8_e4m3* kernel,
                       const float*         input_scale,
                       const float*         kernel_scale,
                       const __nv_bfloat16* bias,
                       const float*         output_scale,
                       cudaStream_t         stream);

    template<bool RELU, bool GELU>
    void Gemm_Bias_Act(__nv_fp8_e4m3*       res,
                       int                  batchCount,
                       int                  m,
                       int                  n,
                       int                  k,
                       int64_t              stridea,
                       int64_t              strideb,
                       int64_t              stridec,
                       const float*         alpha,
                       const float*         beta,
                       const __nv_fp8_e4m3* input,
                       const __nv_fp8_e4m3* kernel,
                       const float*         input_scale,
                       const float*         kernel_scale,
                       const __nv_bfloat16* bias,
                       const float*         output_scale,
                       cudaStream_t         stream);

private:
    int                                 version_major_, version_minor_, version_patch_;
lvhan028's avatar
lvhan028 committed
173
    turbomind::qgmma1x1Launcher qgmmaLauncher;
Li Zhang's avatar
Li Zhang committed
174
175
176
    void*                               cublas_workspace_qgemm_ = nullptr;
};

lvhan028's avatar
lvhan028 committed
177
}  // namespace turbomind