allocator.h 14.6 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/*
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/**
 * Memory Allocator
 **/

#pragma once

#include "cuda_utils.h"
#include <cuda_runtime.h>
#include <unordered_map>
#include <vector>

#ifdef GOOGLE_CUDA
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/shape_inference.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_types.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/lib/core/errors.h"
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#endif

#ifdef TORCH_CUDA
#include "torch/extension.h"
#include <memory>
#endif

lvhan028's avatar
lvhan028 committed
44
#include "src/turbomind/utils/logger.h"
Li Zhang's avatar
Li Zhang committed
45
46
47
48
49

#if defined(CUDART_VERSION) && CUDART_VERSION < 11020
#define CUDA_MEMORY_POOL_DISABLED
#endif

lvhan028's avatar
lvhan028 committed
50
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

enum class AllocatorType {
    CUDA,
    TF,
    TH
};

enum class ReallocType {
    INCREASE,
    REUSE,
    DECREASE,
};

class IAllocator {
public:
    virtual ~IAllocator(){};

    virtual void*        malloc(size_t size, const bool is_set_zero = true, bool is_host = false) = 0;
    virtual void         free(void** ptr, bool is_host = false) const                             = 0;
    virtual void         setStream(cudaStream_t stream)                                           = 0;
    virtual cudaStream_t returnStream()                                                           = 0;
    virtual void         memSet(void* ptr, const int val, const size_t size)                      = 0;

    template<typename T>
    void* reMalloc(T* ptr, size_t size, const bool is_set_zero = true, bool is_host = false)
    {
lvhan028's avatar
lvhan028 committed
77
        TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
78
79
80
81
82
83
        size              = ((size + 31) / 32) * 32;  // make the buffer align with 32 bytes
        void* void_ptr    = (void*)ptr;
        void* ptr_address = getAddress(void_ptr);
        if (isExist(ptr_address)) {
            ReallocType realloc_type = isReMalloc(ptr_address, size);
            if (realloc_type == ReallocType::INCREASE) {
lvhan028's avatar
lvhan028 committed
84
                TM_LOG_DEBUG("ReMalloc the buffer %p since it is too small.", void_ptr);
Li Zhang's avatar
Li Zhang committed
85
86
87
88
89
                free((void**)(&void_ptr), is_host);
                return malloc(size, is_set_zero, is_host);
            }
#if !defined(CUDA_MEMORY_POOL_DISABLED)
            else if (realloc_type == ReallocType::DECREASE) {
lvhan028's avatar
lvhan028 committed
90
                TM_LOG_DEBUG("ReMalloc the buffer %p to release unused memory to memory pools.", void_ptr);
Li Zhang's avatar
Li Zhang committed
91
92
93
94
95
                free((void**)(&void_ptr), is_host);
                return malloc(size, is_set_zero, is_host);
            }
#endif
            else {
lvhan028's avatar
lvhan028 committed
96
                TM_LOG_DEBUG("Reuse original buffer %p with size %d and do nothing for reMalloc.", void_ptr, size);
Li Zhang's avatar
Li Zhang committed
97
98
99
100
101
102
103
                if (is_set_zero) {
                    memSet(void_ptr, 0, size);
                }
                return void_ptr;
            }
        }
        else {
lvhan028's avatar
lvhan028 committed
104
            TM_LOG_DEBUG("Cannot find buffer %p, mallocing new one.", void_ptr);
Li Zhang's avatar
Li Zhang committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
            return malloc(size, is_set_zero, is_host);
        }
    }

protected:
    virtual bool        isExist(void* address) const                 = 0;
    virtual ReallocType isReMalloc(void* address, size_t size) const = 0;

    void* getAddress(void* ptr) const
    {
        return ptr;
    }
};

template<AllocatorType AllocType_>
class Allocator;

template<>
class Allocator<AllocatorType::CUDA>: public IAllocator {
private:
    const int                          device_id_;
    cudaStream_t                       stream_ = 0;  // initialize as default stream
    std::unordered_map<void*, size_t>* pointer_mapping_;

    bool isExist(void* address) const
    {
        return pointer_mapping_->count(address) > 0;
    }
    ReallocType isReMalloc(void* address, size_t size) const
    {
        FT_CHECK(isExist(address));
        if (pointer_mapping_->at(address) < size) {
            return ReallocType::INCREASE;
        }
        else if (pointer_mapping_->at(address) == size) {
            return ReallocType::REUSE;
        }
        else {
            return ReallocType::DECREASE;
        }
    }

public:
    Allocator(int device_id): device_id_(device_id)
    {
lvhan028's avatar
lvhan028 committed
150
        TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
151
152
        pointer_mapping_ = new std::unordered_map<void*, size_t>();
#if defined(CUDA_MEMORY_POOL_DISABLED)
lvhan028's avatar
lvhan028 committed
153
        TM_LOG_WARNING(
Li Zhang's avatar
Li Zhang committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
            "Async cudaMalloc/Free is not supported before CUDA 11.2. Using Sync cudaMalloc/Free."
            "Note this may lead to hang with NCCL kernels launched in parallel; if so, try NCCL_LAUNCH_MODE=GROUP");
#else
        int device_count = 1;
        check_cuda_error(cudaGetDeviceCount(&device_count));
        cudaMemPool_t mempool;
        check_cuda_error(cudaDeviceGetDefaultMemPool(&mempool, device_id));
        cudaMemAccessDesc desc                  = {};
        int               peer_access_available = 0;
        for (int i = 0; i < device_count; i++) {
            if (i == device_id) {
                continue;
            }
            check_cuda_error(cudaDeviceCanAccessPeer(&peer_access_available, device_id, i));
            if (!peer_access_available) {
lvhan028's avatar
lvhan028 committed
169
                TM_LOG_WARNING("Device " + std::to_string(device_id) + " peer access Device " + std::to_string(i)
Li Zhang's avatar
Li Zhang committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
                               + " is not available.");
                continue;
            }
            desc.location.type = cudaMemLocationTypeDevice;
            desc.location.id   = i;
            desc.flags         = cudaMemAccessFlagsProtReadWrite;
            check_cuda_error(cudaMemPoolSetAccess(mempool, &desc, 1));
        }
        // set memory pool threshold to avoid shrinking the pool
        uint64_t setVal = UINT64_MAX;
        check_cuda_error(cudaMemPoolSetAttribute(mempool, cudaMemPoolAttrReleaseThreshold, &setVal));
#endif
    }

    virtual ~Allocator()
    {
lvhan028's avatar
lvhan028 committed
186
        TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        while (!pointer_mapping_->empty()) {
            free((void**)(&pointer_mapping_->begin()->first));
        }
        delete pointer_mapping_;
    }

    void setStream(cudaStream_t stream)
    {
        stream_ = stream;
    }

    cudaStream_t returnStream()
    {
        return stream_;
    };

    void* malloc(size_t size, const bool is_set_zero = true, bool is_host = false)
    {
lvhan028's avatar
lvhan028 committed
205
        TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        if (size == 0) {
            return nullptr;
        }
        void* ptr      = nullptr;
        int   o_device = 0;

        check_cuda_error(getSetDevice(device_id_, &o_device));
        if (is_host) {
            check_cuda_error(cudaMallocHost(&ptr, (size_t)(ceil(size / 32.)) * 32));
        }
        else {
#if defined(CUDA_MEMORY_POOL_DISABLED)
            check_cuda_error(cudaMalloc(&ptr, (size_t)(ceil(size / 32.)) * 32));
#else
            check_cuda_error(cudaMallocAsync(&ptr, (size_t)(ceil(size / 32.)) * 32, stream_));
#endif
        }
        if (is_set_zero) {
            check_cuda_error(cudaMemsetAsync(ptr, 0, (size_t)(ceil(size / 32.)) * 32, stream_));
        }
        check_cuda_error(getSetDevice(o_device));
lvhan028's avatar
lvhan028 committed
227
        TM_LOG_DEBUG("malloc buffer %p with size %ld", ptr, size);
Li Zhang's avatar
Li Zhang committed
228
229
230
231
232
233
234
235

        pointer_mapping_->insert({getAddress(ptr), size});

        return ptr;
    }

    void free(void** ptr, bool is_host = false) const
    {
lvhan028's avatar
lvhan028 committed
236
        TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
237
238
239
240
        void* address = getAddress(*ptr);
        if (*ptr != nullptr) {
            int o_device = 0;
            if (pointer_mapping_->count(address)) {
lvhan028's avatar
lvhan028 committed
241
                TM_LOG_DEBUG("Free buffer %p", address);
Li Zhang's avatar
Li Zhang committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
                check_cuda_error(getSetDevice(device_id_, &o_device));
                if (is_host) {
                    check_cuda_error(cudaFreeHost(*ptr));
                }
                else {
#if defined(CUDA_MEMORY_POOL_DISABLED)
                    check_cuda_error(cudaFree(*ptr));
#else
                    check_cuda_error(cudaFreeAsync(*ptr, stream_));
                    cudaStreamSynchronize(stream_);
#endif
                }
                check_cuda_error(getSetDevice(o_device));
                pointer_mapping_->erase(address);
            }
            else {
lvhan028's avatar
lvhan028 committed
258
                TM_LOG_WARNING("pointer_mapping_ does not have information of ptr at %p.", address);
Li Zhang's avatar
Li Zhang committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
            }
        }
        *ptr = nullptr;
        return;
    }

    void memSet(void* ptr, const int val, const size_t size)
    {
        check_cuda_error(cudaMemsetAsync(ptr, val, size, stream_));
    }
};

#ifdef GOOGLE_CUDA
using namespace tensorflow;
template<>
class Allocator<AllocatorType::TF>: public IAllocator {
    OpKernelContext*                               context_;
    std::unordered_map<void*, tensorflow::Tensor>* pointer_mapping_;
    cudaStream_t                                   stream_;

    bool isExist(void* address) const
    {
        return pointer_mapping_->count(address) > 0;
    }
    ReallocType isReMalloc(void* address, size_t size) const
    {
        FT_CHECK(isExist(address));
        size_t current_buffer_size = 1;
        for (int i = 0; i < pointer_mapping_->at(address).dims(); i++) {
            current_buffer_size *= pointer_mapping_->at(address).dim_size(i);
        }
lvhan028's avatar
lvhan028 committed
290
        TM_LOG_DEBUG("current_buffer_size: %d, new buffer: %d", current_buffer_size, size);
Li Zhang's avatar
Li Zhang committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        if (current_buffer_size < size) {
            return ReallocType::INCREASE;
        }
        else if (current_buffer_size == size) {
            return ReallocType::REUSE;
        }
        else {
            return ReallocType::DECREASE;
        }
    }

public:
    Allocator(OpKernelContext* context, cudaStream_t stream): context_(context), stream_(stream)
    {
        pointer_mapping_ = new std::unordered_map<void*, tensorflow::Tensor>();
    }

    void setStream(cudaStream_t stream)
    {
        stream_ = stream;
    }

    cudaStream_t returnStream()
    {
        return stream_;
    };

    void* malloc(size_t size, const bool is_set_zero = true, bool is_host = false)
    {
lvhan028's avatar
lvhan028 committed
320
        TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        tensorflow::Tensor buf;
        long long int      buf_size = ((long long int)ceil(size / 32.) * 32);
        tensorflow::Status status;
        if (is_host) {
            tensorflow::AllocatorAttributes pinned_allocator;
            pinned_allocator.set_on_host(true);
            pinned_allocator.set_gpu_compatible(true);
            status = context_->allocate_temp(DT_UINT8, TensorShape{buf_size}, &buf, pinned_allocator);
        }
        else {
            status = context_->allocate_temp(DT_UINT8, TensorShape{buf_size}, &buf);
        }

        if (status != tensorflow::Status::OK()) {
            throw std::runtime_error("TF error: context->allocate_temp failed");
        }

        auto  flat = buf.flat<uint8>();
        void* ptr  = (void*)flat.data();
        if (is_set_zero) {
            cudaMemsetAsync(ptr, 0, buf_size, stream_);
        }
        pointer_mapping_->insert({getAddress(ptr), buf});

        return ptr;
    }

    void free(void** ptr, bool is_host = false) const
    {
lvhan028's avatar
lvhan028 committed
350
        TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        void* address = getAddress(*ptr);
        pointer_mapping_->erase(address);
        *ptr = nullptr;
        return;
    }

    virtual ~Allocator()
    {
        while (!pointer_mapping_->empty()) {
            void* ptr = pointer_mapping_->begin()->second.flat<uint8>().data();
            free((void**)(&ptr));
        }
        pointer_mapping_->clear();
        delete pointer_mapping_;
    }

    void memSet(void* ptr, const int val, const size_t size)
    {
        check_cuda_error(cudaMemsetAsync(ptr, val, size, stream_));
    }
};
#endif

#ifdef TORCH_CUDA
template<>
class Allocator<AllocatorType::TH>: public IAllocator {
    std::unordered_map<void*, torch::Tensor>* pointer_mapping_;

    bool isExist(void* address) const
    {
        return pointer_mapping_->count(address) > 0;
    }
    ReallocType isReMalloc(void* address, size_t size) const
    {
        FT_CHECK(isExist(address));
        size_t current_buffer_size = 1;
        for (int i = 0; i < pointer_mapping_->at(address).dim(); i++) {
            current_buffer_size *= pointer_mapping_->at(address).size(i);
        }
lvhan028's avatar
lvhan028 committed
390
        TM_LOG_DEBUG(
Li Zhang's avatar
Li Zhang committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
            "current_buffer_size: %d, original buffer: %p, new buffer: %d", current_buffer_size, address, size);
        if (current_buffer_size < size) {
            return ReallocType::INCREASE;
        }
        else if (current_buffer_size == size) {
            return ReallocType::REUSE;
        }
        else {
            return ReallocType::DECREASE;
        }
    }

public:
    Allocator()
    {
        pointer_mapping_ = new std::unordered_map<void*, torch::Tensor>();
    }

    void setStream(cudaStream_t stream)
    {
        // nothing to do here;
    }

    cudaStream_t returnStream()
    {
        // nothing to do here;
        return 0;
    };

    void* malloc(size_t size, const bool is_set_zero = true, bool is_host = false)
    {
lvhan028's avatar
lvhan028 committed
422
        TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
423
424
425
426
427
428
429
430
431
432
433
434
        int64_t       buf_size = static_cast<int64_t>(ceil(size / 32.)) * 32;
        torch::Tensor buf;
        if (is_host) {
            buf = torch::empty({buf_size}, torch::dtype(torch::kUInt8).device(torch::kCPU).pinned_memory(true));
        }
        else {
            buf = torch::empty({buf_size}, torch::dtype(torch::kUInt8).device(torch::kCUDA));
        }
        void* ptr = buf.data_ptr();
        if (is_set_zero) {
            cudaMemset(ptr, 0, buf_size);
        }
lvhan028's avatar
lvhan028 committed
435
        TM_LOG_DEBUG("malloc buffer %p with size %ld", ptr, buf_size);
Li Zhang's avatar
Li Zhang committed
436
437
438
439
440
441
        pointer_mapping_->insert({getAddress(ptr), buf});
        return ptr;
    }

    void free(void** ptr, bool is_host = false) const
    {
lvhan028's avatar
lvhan028 committed
442
        TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
443
444
445
446
447
448
449
450
        void* address = getAddress(*ptr);
        pointer_mapping_->erase(address);
        *ptr = nullptr;
        return;
    }

    virtual ~Allocator()
    {
lvhan028's avatar
lvhan028 committed
451
        TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
        while (!pointer_mapping_->empty()) {
            void* ptr = pointer_mapping_->begin()->second.data_ptr();
            free((void**)(&ptr));
        }
        pointer_mapping_->clear();
        delete pointer_mapping_;
    }

    void memSet(void* ptr, const int val, const size_t size)
    {
        check_cuda_error(cudaMemset(ptr, val, size));
    }
};
#endif
lvhan028's avatar
lvhan028 committed
466
}  // namespace turbomind