triton_utils.hpp 1.97 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*
 * Copyright (c) 2022-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

lvhan028's avatar
lvhan028 committed
19
20
#include "src/turbomind/triton_backend/transformer_triton_backend.hpp"
#include "src/turbomind/utils/Tensor.h"
Li Zhang's avatar
Li Zhang committed
21

lvhan028's avatar
lvhan028 committed
22
namespace ft = turbomind;
Li Zhang's avatar
Li Zhang committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

template<typename T>
void move_tensor_H2D(const triton::Tensor&                                          tensor,
                     T*&                                                            d_ptr,
                     const std::unique_ptr<ft::Allocator<ft::AllocatorType::CUDA>>* allocator)
{
    if (tensor.where == triton::MEMORY_GPU) {
        return;
    }

    size_t tensor_size = 1;
    for (auto t : tensor.shape) {
        tensor_size *= t;
    }

    cudaStream_t stream = (*allocator)->returnStream();

    d_ptr = (T*)((*allocator)->reMalloc(d_ptr, sizeof(T) * tensor_size, false));
    ft::check_cuda_error(cudaMemcpyAsync(d_ptr, (T*)tensor.data, sizeof(T) * tensor_size, cudaMemcpyDefault, stream));
}

template<typename T>
ft::Tensor as_GPU_tensor(const triton::Tensor& tensor, T* d_ptr)
{
    return ft::Tensor{ft::MEMORY_GPU,
                      triton::Tensor::convertTritonTypeToFt(tensor.type),
                      tensor.shape,
                      tensor.where == triton::MEMORY_CPU ? d_ptr : tensor.data};
}

inline ft::Tensor as_CPU_tensor(const triton::Tensor& tensor)
{
    return ft::Tensor{ft::MEMORY_CPU, triton::Tensor::convertTritonTypeToFt(tensor.type), tensor.shape, tensor.data};
}