llama_gemm.cc 6.9 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// Copied from
lvhan028's avatar
lvhan028 committed
18
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/models/multi_gpu_gpt/gpt_gemm.cc
Li Zhang's avatar
Li Zhang committed
19

lvhan028's avatar
lvhan028 committed
20
21
#include "src/turbomind/utils/gemm_test/gpt_gemm_func.h"
#include "src/turbomind/utils/memory_utils.h"
Li Zhang's avatar
Li Zhang committed
22

lvhan028's avatar
lvhan028 committed
23
namespace ft = turbomind;
Li Zhang's avatar
Li Zhang committed
24
25
26
27

int main(int argc, char* argv[])
{
    if (argc < 9 || argc > 11) {
lvhan028's avatar
lvhan028 committed
28
        TM_LOG_ERROR("./bin/llama_gemm batch_size \\ \n"
Li Zhang's avatar
Li Zhang committed
29
30
31
32
33
34
35
36
37
                     "                 beam_width \\ \n"
                     "                 max_input_len \\ \n"
                     "                 head_number \\ \n"
                     "                 size_per_head \\ \n"
                     "                 inter_size \\ \n"
                     "                 vocab_size \\ \n"
                     "                 data_type \\ \n"
                     "                 tensor_para_size \\\n"
                     "                 is_append (append new config into exist gemm_config.ini or not)");
lvhan028's avatar
lvhan028 committed
38
        TM_LOG_ERROR("e.g. ./bin/llama_gemm 8 4 32 96 128 49152 51200 1 8 1");
Li Zhang's avatar
Li Zhang committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
        return 0;
    }

    const int                batch_size    = atoi(argv[1]);
    const int                beam_width    = atoi(argv[2]);
    const int                max_input_len = atoi(argv[3]);
    const int                head_num      = atoi(argv[4]);
    const int                size_per_head = atoi(argv[5]);
    const int                inter_size    = atoi(argv[6]);
    const int                vocab_size    = atoi(argv[7]);
    const ft::CublasDataType data_type     = static_cast<ft::CublasDataType>(atoi(argv[8]));  // 0 FP32, 1 FP16, 2 BF 16
    const int                tensor_para_size = argc < 10 ? 1 : atoi(argv[9]);
    const bool               is_append        = argc < 11 ? false : (bool)(atoi(argv[10]));

lvhan028's avatar
lvhan028 committed
53
54
55
56
57
58
59
60
61
62
63
    TM_LOG_INFO("Arguments:");
    TM_LOG_INFO("  batch_size: %d", batch_size);
    TM_LOG_INFO("  beam_width: %d", beam_width);
    TM_LOG_INFO("  max_input_len: %d", max_input_len);
    TM_LOG_INFO("  head_num: %d", head_num);
    TM_LOG_INFO("  size_per_head: %d", size_per_head);
    TM_LOG_INFO("  inter_size: %d", inter_size);
    TM_LOG_INFO("  vocab_size: %d", vocab_size);
    TM_LOG_INFO("  data_type: %d", data_type);
    TM_LOG_INFO("  tensor_para_size: %d", tensor_para_size);
    TM_LOG_INFO("  is_append: %d", (int)is_append);
Li Zhang's avatar
Li Zhang committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    std::cout << std::endl;

    void*  gemm_test_buf;
    size_t buf_size_in_byte = ft::calGptGemmTestBufSizeInByte(batch_size,
                                                              beam_width,
                                                              max_input_len,
                                                              head_num,
                                                              size_per_head,
                                                              inter_size,
                                                              vocab_size,
                                                              tensor_para_size,
                                                              data_type);
    size_t total, free;
    ft::check_cuda_error(cudaMemGetInfo(&free, &total));
    if (free < buf_size_in_byte + 10 * 1024 * 1024) {
        printf("[ERROR] There is no enough device memory for gemm test!\n"
               " %ld Bytes is needed, but only %ld Bytes is free.\n",
               buf_size_in_byte,
               free);
        gemm_test_buf = NULL;
        return -1;
    }
    else {
        ft::deviceMalloc(reinterpret_cast<char**>(&gemm_test_buf), buf_size_in_byte, false);
    }

    if (data_type == ft::FLOAT_DATATYPE) {
        ft::generate_gpt_gemm_config<float>(batch_size,
                                            beam_width,
                                            max_input_len,
                                            head_num,
                                            size_per_head,
                                            inter_size,
                                            vocab_size,
                                            tensor_para_size,
                                            gemm_test_buf,
                                            is_append);
    }
    else if (data_type == ft::HALF_DATATYPE) {
        ft::generate_gpt_gemm_config<half>(batch_size,
                                           beam_width,
                                           max_input_len,
                                           head_num,
                                           size_per_head,
                                           inter_size,
                                           vocab_size,
                                           tensor_para_size,
                                           gemm_test_buf,
                                           is_append);
    }
#ifdef ENABLE_BF16
    else if (data_type == ft::BFLOAT16_DATATYPE) {
        ft::generate_gpt_gemm_config<__nv_bfloat16>(batch_size,
                                                    beam_width,
                                                    max_input_len,
                                                    head_num,
                                                    size_per_head,
                                                    inter_size,
                                                    vocab_size,
                                                    tensor_para_size,
                                                    gemm_test_buf,
                                                    is_append);
    }
#endif
#ifdef ENABLE_FP8
    else if (data_type == ft::FP8_DATATYPE) {
        ft::generate_gpt_gemm_config<__nv_fp8_e4m3>(batch_size,
                                                    beam_width,
                                                    max_input_len,
                                                    head_num,
                                                    size_per_head,
                                                    inter_size,
                                                    vocab_size,
                                                    tensor_para_size,
                                                    gemm_test_buf,
                                                    false);
    }
#endif
    else {
        printf("[ERROR] data type only supports fp32(0), fp16(1), bf16(2), fp8(4). \n");
        return -1;
    }

    ft::check_cuda_error(cudaFree(gemm_test_buf));
    return 0;
}