LlamaNcclGuard.h 2.69 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
// Copyright (c) OpenMMLab. All rights reserved.

#pragma once

lvhan028's avatar
lvhan028 committed
5
#include "src/turbomind/utils/nccl_utils.h"
Li Zhang's avatar
Li Zhang committed
6
7
8
9
10
11
#include <array>
#include <atomic>
#include <condition_variable>
#include <cuda_runtime.h>
#include <mutex>

lvhan028's avatar
lvhan028 committed
12
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

struct NcclGuard {
    static constexpr int kMaxGroupCount = 32;

    static std::mutex& globalNcclMutex()
    {
        static std::mutex inst;
        return inst;
    }

    struct GroupState {
        std::mutex              mutex;
        std::condition_variable cv;
        int                     ref_count;
    };

    static GroupState& groupState(int group_id)
    {
        static std::array<GroupState, kMaxGroupCount> array{};
        FT_CHECK(group_id < kMaxGroupCount);
        return array[group_id];
    }

    NcclGuard(NcclParam tensor_para, cudaStream_t stream, bool barrier = false):
        tensor_para_(tensor_para), stream_(stream), barrier_(barrier)
    {
        if (is_active()) {
            auto& group = groupState(tensor_para_.group_id_);
            if (tensor_para_.rank_ == 0) {
                /// TODO: use std::optional after switching to C++17
                global_nccl_lock_ = std::make_unique<std::lock_guard<std::mutex>>(globalNcclMutex());
                {
                    std::lock_guard<std::mutex> lock(group.mutex);
                    group.ref_count = tensor_para_.world_size_;
                }
                group.cv.notify_all();
            }
            else {
                std::unique_lock<std::mutex> lock(group.mutex);
                group.cv.wait(lock, [&] { return group.ref_count > 0; });
            }
        }
    }

    ~NcclGuard()
    {
        if (is_active()) {
            ftNcclStreamSynchronize(tensor_para_, NcclParam{}, stream_);

            auto& group = groupState(tensor_para_.group_id_);

            int value = -1;
            {
                std::lock_guard<std::mutex> lock(group.mutex);
                value = --group.ref_count;
            }
            if (value == 0) {
                group.cv.notify_all();
            }
            else if (barrier_ || tensor_para_.rank_ == 0) {
                std::unique_lock<std::mutex> lock(group.mutex);
                group.cv.wait(lock, [&] { return group.ref_count == 0; });
            }

            // rank 0 unlocks global NCCL mutex automatically
        }
    }

    bool is_active()
    {
        return barrier_ || (ftNcclGroupCount() > 1 && tensor_para_.world_size_ > 1);
    }

    NcclParam                                    tensor_para_;
    cudaStream_t                                 stream_;
    bool                                         barrier_;
    std::unique_ptr<std::lock_guard<std::mutex>> global_nccl_lock_;
};

lvhan028's avatar
lvhan028 committed
92
}  // namespace turbomind