OnlineBeamSearchLayer.cu 11.3 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/*
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

lvhan028's avatar
lvhan028 committed
17
#include "src/turbomind/layers/beam_search_layers/OnlineBeamSearchLayer.h"
Li Zhang's avatar
Li Zhang committed
18

lvhan028's avatar
lvhan028 committed
19
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

static const int SMALL_TOP_K_SOFTMAX_MAX_VOC_PARTS = 128;
static const int MAX_K                             = 4;

template<typename T>
__global__ void update_kernel(bool*          finished,
                              int*           parent_ids,
                              int*           sequence_length,
                              int*           word_ids,
                              int*           output_ids,
                              BeamHypotheses beam_hyps,
                              const int      vocab_size,
                              const int*     end_ids,
                              const int      local_batch_size,
                              const int      beam_width)
{
    for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < local_batch_size * beam_width;
         index += blockDim.x * gridDim.x) {

        int batch_id           = index / beam_width;
        sequence_length[index] = finished[index] ? sequence_length[index] : sequence_length[index] + 1;

        int beam_id = (word_ids[index] / vocab_size) % beam_width;
        int word_id = word_ids[index] % vocab_size;

        sequence_length[index] = sequence_length[batch_id * beam_width + beam_id];
        finished[index]        = word_id == end_ids[index / beam_width] ? 1 : 0;
        parent_ids[index]      = beam_id;
        word_ids[index]        = word_id;
        output_ids[index]      = word_id;

        if (beam_hyps.num_beams != nullptr) {
            if (beam_hyps.num_beams[beam_hyps.ite * beam_hyps.local_batch_size + batch_id] == beam_width) {
                for (int i = 0; i < beam_width; i++) {
                    finished[batch_id * beam_width + i] = true;
                }
            }
        }
    }
}

void invokeUpdate(bool*           finished,
                  int*            parent_ids,
                  int*            sequence_length,
                  int*            word_ids,
                  int*            output_ids,
                  BeamHypotheses* beam_hyps,
                  const int       local_batch_size,
                  const int       beam_width,
                  const int       vocab_size_padded,
                  const int*      end_ids,
                  cudaStream_t    stream)
{
    dim3 grid((int)ceil(local_batch_size * beam_width * 1.0 / 256));
    dim3 block(256);

    update_kernel<float><<<grid, block, 0, stream>>>(finished,
                                                     parent_ids,
                                                     sequence_length,
                                                     word_ids,
                                                     output_ids,
                                                     *beam_hyps,
                                                     vocab_size_padded,
                                                     end_ids,
                                                     local_batch_size,
                                                     beam_width);
}

template<typename T>
void OnlineBeamSearchLayer<T>::invokeSoftMax(TensorMap* output_tensors, TensorMap* input_tensors)
{
    // input_tensors:
    //      logits [local_batch_size, beam_width, vocab_size_padded]
    //      embedding_bias [vocab_size_padded]
    //      step [1] on cpu
    //      src_cache_indirection [local_batch_size, beam_width, max_seq_len]
    //      max_input_length [1] on cpu
    //      input_lengths [local_batch_size * beam_width]
    //      ite [1] on cpu
    //      beam_search_diversity_rate [1] on cpu, optional
    //      temperature [1] on cpu, optional
    //      len_penalty [1] on cpu, optional
    //      repetition_penalty [1] on cpu, optional

    // output_tensors:
    //      output_ids [max_seq_len, batch_size, beam_width]
    //      finished [local_batch_size * beam_width]
    //      cum_log_probs [local_batch_size * beam_width]
    //      parent_ids [max_seq_len, batch_size * beam_width]
    //      sequence_length [local_batch_size * beam_width]
    //      tgt_cache_indirection [local_batch_size, beam_width, max_seq_len]
    //      output_log_probs [max_seq_len, batch_size, beam_width]

    FT_CHECK(input_tensors->size() >= 7);
    FT_CHECK(output_tensors->size() >= 6);

    const int   batch_size       = output_tensors->at("output_ids").shape[1];
    const int   beam_width       = output_tensors->at("output_ids").shape[2];
    const int   step             = input_tensors->at("step").getVal<int>();
    const int   ite              = input_tensors->at("ite").getVal<int>();
    const int   local_batch_size = input_tensors->at("logits").shape[0];
    const float diversity_rate   = input_tensors->isExist("beam_search_diversity_rate") ?
                                       input_tensors->at("beam_search_diversity_rate").getVal<float>() :
                                       0.0f;
    const float length_penalty =
        input_tensors->isExist("len_penalty") ? input_tensors->at("len_penalty").getVal<float>() : 0.0f;

    const int id_offset = step * batch_size * beam_width + local_batch_size * ite * beam_width;

    BeamHypotheses beam_hyps;
    if (output_tensors->isExist("beam_hyps")) {
        beam_hyps                      = *((BeamHypotheses*)(output_tensors->at("beam_hyps").getPtr<void>()));
        beam_hyps.step                 = step;
        beam_hyps.ite                  = ite;
        beam_hyps.local_batch_size     = local_batch_size;
        beam_hyps.batch_size           = output_tensors->at("output_ids").shape[1];
        beam_hyps.max_seq_len          = output_tensors->at("output_ids").shape[0];
        beam_hyps.output_ids_src       = output_tensors->at("output_ids").getPtr<int>();
        beam_hyps.parent_ids_src       = output_tensors->at("parent_ids").getPtr<int>();
        beam_hyps.sequence_lengths_src = output_tensors->at("sequence_length").getPtr<int>();
        beam_hyps.log_probs_src        = output_tensors->getPtr<float>("output_log_probs", nullptr);
        beam_hyps.length_penalty       = length_penalty;
        beam_hyps.end_ids              = input_tensors->at("end_id").getPtr<int>();
    }

    invokeTopkSoftMax(input_tensors->at("logits").getPtr<T>(),
                      (const T*)(nullptr),
                      output_tensors->at("finished").getPtr<bool>(),
                      output_tensors->at("sequence_length").getPtr<int>(),
                      output_tensors->at("cum_log_probs").getPtr<float>(),
                      output_tensors->getPtrWithOffset<float>("output_log_probs", id_offset, nullptr),
                      output_tensors->at("output_ids").getPtrWithOffset<int>(id_offset),
                      topk_softmax_workspace_,
                      topk_softmax_workspace_size_,
                      &beam_hyps,
                      local_batch_size,
                      beam_width,
                      vocab_size_padded_,
                      input_tensors->at("end_id").getPtr<int>(),
                      diversity_rate,
                      length_penalty,
                      stream_);
    sync_check_cuda_error();

    invokeUpdate(output_tensors->at("finished").getPtr<bool>(),
                 output_tensors->at("parent_ids").getPtrWithOffset<int>(id_offset),
                 output_tensors->at("sequence_length").getPtr<int>(),
                 output_tensors->at("output_ids").getPtrWithOffset<int>(id_offset),
                 output_tensors->at("output_ids").getPtrWithOffset<int>(id_offset),
                 &beam_hyps,
                 local_batch_size,
                 beam_width,
                 vocab_size_padded_,
                 input_tensors->at("end_id").getPtr<const int>(),
                 stream_);
    sync_check_cuda_error();
}

template<typename T>
void OnlineBeamSearchLayer<T>::allocateBuffer()
{
    FT_CHECK(false);
}

template<typename T>
void OnlineBeamSearchLayer<T>::allocateBuffer(size_t batch_size, size_t beam_width)
{
lvhan028's avatar
lvhan028 committed
187
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    // we need to check 2 * beam_width candidates each time
    // 64 is the max beam width we support now.
    topk_softmax_workspace_size_ =
        (size_t)(ceil(batch_size * 64 * (64 * 2) / 4.) * 4 * 2
                 + ceil(batch_size * (64 * 2) * SMALL_TOP_K_SOFTMAX_MAX_VOC_PARTS * (2 * (MAX_K * 2) + 2) / 4.) * 4);

    topk_softmax_workspace_ = reinterpret_cast<float*>(
        allocator_->reMalloc(topk_softmax_workspace_, sizeof(float) * topk_softmax_workspace_size_, true));
    is_allocate_buffer_ = true;
}

template<typename T>
OnlineBeamSearchLayer<T>::OnlineBeamSearchLayer(size_t           max_batch_size,
                                                size_t           head_num,
                                                size_t           size_per_head,
                                                size_t           beam_width,
                                                size_t           vocab_size,
                                                size_t           vocab_size_padded,
                                                int              end_id,
                                                float            diversity_rate,
                                                float            temperature,
                                                float            len_penalty,
                                                float            repetition_penalty,
                                                cudaStream_t     stream,
                                                cublasMMWrapper* cublas_wrapper,
                                                IAllocator*      allocator,
                                                bool             is_free_buffer_after_forward):
    BaseBeamSearchLayer<T>(max_batch_size,
                           head_num,
                           size_per_head,
                           beam_width,
                           vocab_size,
                           vocab_size_padded,
                           end_id,
                           diversity_rate,
                           temperature,
                           len_penalty,
                           repetition_penalty,
                           stream,
                           cublas_wrapper,
                           allocator,
                           is_free_buffer_after_forward)
{
}

template<typename T>
OnlineBeamSearchLayer<T>::OnlineBeamSearchLayer(OnlineBeamSearchLayer<T> const& beam_search_layer):
    BaseBeamSearchLayer<T>(beam_search_layer)
{
lvhan028's avatar
lvhan028 committed
237
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
238
239
240
241
242
}

template<typename T>
OnlineBeamSearchLayer<T>::~OnlineBeamSearchLayer()
{
lvhan028's avatar
lvhan028 committed
243
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
244
245
246
247
248
}

template class OnlineBeamSearchLayer<float>;
template class OnlineBeamSearchLayer<half>;

lvhan028's avatar
lvhan028 committed
249
}  // namespace turbomind