FfnFP8Layer.h 4.67 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*
 * Copyright (c) 2022-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

lvhan028's avatar
lvhan028 committed
19
20
21
22
#include "src/turbomind/layers/BaseLayer.h"
#include "src/turbomind/layers/FfnFP8Weight.h"
#include "src/turbomind/layers/FfnLayer.h"
#include "src/turbomind/utils/memory_utils.h"
Li Zhang's avatar
Li Zhang committed
23
24
#include <vector>

lvhan028's avatar
lvhan028 committed
25
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

template<typename T1, typename T2>
class FfnFP8Layer: public BaseLayer {
private:
    void allocateBuffer() override;
    void freeBuffer() override;
    void allocateBuffer(size_t token_num);

protected:
    const int    fp8_mode_;
    T1*          inter_buf_      = nullptr;
    T2*          inter_buf_bf16_ = nullptr;
    size_t       inter_size_;
    virtual void invokeAddBiasActivation(const int    m,
                                         const T2*    bias,
                                         const float* input_scale,
                                         const float* input_scale_2,
                                         const float* input_scale_2_min,
                                         const float* output_scale) = 0;

public:
    FfnFP8Layer(size_t           inter_size,
                int              fp8_mode,
                cudaStream_t     stream,
                cublasMMWrapper* cublas_wrapper,
                IAllocator*      allocator,
                bool             is_free_buffer_after_forward,
                bool             sparse = false);

    FfnFP8Layer(FfnFP8Layer<T1, T2> const& ffn_layer);

    virtual ~FfnFP8Layer();

    virtual void forward(TensorMap* output_tensors, TensorMap* input_tensors, const FfnFP8Weight<T1, T2>* ffn_weights);
    virtual ActivationType getActivationType() = 0;
};

template<typename T1, typename T2>
class GeluFfnFP8Layer: public FfnFP8Layer<T1, T2> {
public:
    GeluFfnFP8Layer(size_t           inter_size,
                    int              fp8_mode_,
                    cudaStream_t     stream,
                    cublasMMWrapper* cublas_wrapper,
                    IAllocator*      allocator,
                    bool             is_free_buffer_after_forward,
                    bool             sparse = false);

    GeluFfnFP8Layer(GeluFfnFP8Layer<T1, T2> const& ffn_layer);

    virtual ~GeluFfnFP8Layer() = default;
    ActivationType getActivationType() override
    {
        return ActivationType::Gelu;
    };

protected:
    using FfnFP8Layer<T1, T2>::stream_;

private:
    using FfnFP8Layer<T1, T2>::inter_buf_;
    using FfnFP8Layer<T1, T2>::inter_size_;
    using FfnFP8Layer<T1, T2>::fp8_mode_;
    using FfnFP8Layer<T1, T2>::inter_buf_bf16_;
    void invokeAddBiasActivation(const int    m,
                                 const T2*    bias,
                                 const float* input_scale,
                                 const float* input_scale_2,
                                 const float* input_scale_2_min,
                                 const float* output_scale) override;
};

template<typename T1, typename T2>
class ReluFfnFP8Layer: public FfnFP8Layer<T1, T2> {
public:
    ReluFfnFP8Layer(size_t           inter_size,
                    int              fp8_mode,
                    cudaStream_t     stream,
                    cublasMMWrapper* cublas_wrapper,
                    IAllocator*      allocator,
                    bool             is_free_buffer_after_forward,
                    bool             sparse = false);

    ReluFfnFP8Layer(ReluFfnFP8Layer<T1, T2> const& ffn_layer);

    virtual ~ReluFfnFP8Layer() = default;
    ActivationType getActivationType() override
    {
        return ActivationType::Relu;
    };

protected:
    using FfnFP8Layer<T1, T2>::stream_;

private:
    using FfnFP8Layer<T1, T2>::inter_buf_;
    using FfnFP8Layer<T1, T2>::inter_size_;
    using FfnFP8Layer<T1, T2>::fp8_mode_;
    using FfnFP8Layer<T1, T2>::inter_buf_bf16_;
    void invokeAddBiasActivation(const int    m,
                                 const T2*    bias,
                                 const float* input_scale,
                                 const float* input_scale_2,
                                 const float* input_scale_2_min,
                                 const float* output_scale) override;
};

lvhan028's avatar
lvhan028 committed
133
}  // namespace turbomind