stop_criteria_kernels.cu 6.36 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/*
 * Copyright (c) 2022-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

lvhan028's avatar
lvhan028 committed
17
18
19
20
#include "src/turbomind/kernels/reduce_kernel_utils.cuh"
#include "src/turbomind/kernels/stop_criteria_kernels.h"
#include "src/turbomind/utils/cuda_utils.h"
#include "src/turbomind/utils/memory_utils.h"
Li Zhang's avatar
Li Zhang committed
21

lvhan028's avatar
lvhan028 committed
22
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

__global__ void stop_words_criterion(const int* output_ids,
                                     const int* parent_ids,
                                     const int* stop_words,
                                     bool*      finished,
                                     size_t     id_offset,
                                     size_t     stop_words_len,
                                     int        batch_size,
                                     int        beam_width,
                                     int        step)
{
    const int id        = blockIdx.x * blockDim.x + threadIdx.x;
    const int batch_idx = blockIdx.y / beam_width;
    const int beam_idx  = blockIdx.y % beam_width;

    const int* base_stop_words = stop_words + batch_idx * 2 * stop_words_len;
    const int* base_offsets    = base_stop_words + stop_words_len;

    if (id >= stop_words_len || base_offsets[id] < 0) {
        return;
    }

    const int item_end   = base_offsets[id];
    const int item_start = (id > 0) ? base_offsets[id - 1] : 0;
    const int item_size  = item_end - item_start;

    /* The single-token case unconditionally bans the token */
    bool should_stop = false;

    /* Enough previously generated tokens to look for a match */
    if (step + 1 >= item_size) {
        should_stop            = true;
        int        parent_id   = beam_idx;
        const bool gather_beam = beam_width > 1;

        for (int token_idx = item_size - 1; token_idx >= 0; token_idx--) {
            const int previous_token = output_ids[(step - (item_size - 1) + token_idx) * batch_size * beam_width
                                                  + id_offset + batch_idx * beam_width + parent_id];

            if (previous_token != base_stop_words[item_start + token_idx]) {
                should_stop = false;
                break;
            }
            if (gather_beam) {
                parent_id = parent_ids[(step - (item_size - 1) + token_idx) * beam_width * batch_size + id_offset
                                       + batch_idx * beam_width + parent_id];

                if (parent_id < 0 || parent_id >= beam_width) {
                    should_stop = false;
                    break;
                }
            }
        }
    }

    if (should_stop) {
        finished[batch_idx * beam_width + beam_idx] = true;
    }
}

void invokeStopWordsCriterion(const int*   output_ids,
                              const int*   parent_ids,
                              const int*   stop_words,
                              bool*        finished,
                              size_t       id_offset,
                              size_t       stop_words_len,
                              int          batch_size,
                              int          beam_width,
                              int          step,
                              cudaStream_t stream)
{
lvhan028's avatar
lvhan028 committed
94
    TM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    // Check if we have sampled a word from the stop_words list. If so, stop the sequence.
    dim3 block, grid;
    block.x = min(((stop_words_len + 32 - 1) / 32) * 32, 256UL);
    grid.x  = (stop_words_len + block.x - 1) / block.x;
    grid.y  = batch_size * beam_width;

    stop_words_criterion<<<grid, block, 0, stream>>>(
        output_ids, parent_ids, stop_words, finished, id_offset, stop_words_len, batch_size, beam_width, step);
    sync_check_cuda_error();
}

__global__ void length_criterion(bool*           finished,
                                 bool*           should_stop,
                                 int*            finished_sum,
                                 const uint32_t* sequence_limit_length,
                                 int             batch_size,
                                 int             beam_width,
                                 int             step)
{
    int thread_finished_count = 0;
    for (int index = threadIdx.x; index < batch_size * beam_width; index += blockDim.x) {
        const int batch_idx = index / beam_width;

        finished[index] |= step >= sequence_limit_length[batch_idx];
        thread_finished_count += finished[index] ? 1 : 0;
    }
    int block_finished_count = 0;
    if (blockDim.x <= 32) {
        block_finished_count = warpReduceSum(thread_finished_count);
    }
    else {
        block_finished_count = blockReduceSum(thread_finished_count);
    }
    __syncthreads();

    if (threadIdx.x == 0) {
        finished_sum[0] = block_finished_count;
    }
}

void invokeLengthCriterion(bool*           finished,
                           bool*           should_stop,
                           int*            h_pinned_finished_sum_,
                           const uint32_t* sequence_limit_length,
                           int             batch_size,
                           int             beam_width,
                           int             step,
                           cudaStream_t    stream)
{
    // Check if we have attained the sequence length limit. If so, stop the sequence.
    // In addition, check if all sequences are stopped and return the result in should_stop
lvhan028's avatar
lvhan028 committed
146
    TM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
147
148
149
150
151
    dim3 block{min(512, uint32_t(batch_size * beam_width))};
    dim3 grid{1};
    h_pinned_finished_sum_[0] = -1;

    length_criterion<<<grid, block, 0, stream>>>(
AllentDan's avatar
AllentDan committed
152
        finished, should_stop, h_pinned_finished_sum_, sequence_limit_length, batch_size, beam_width, step);
Li Zhang's avatar
Li Zhang committed
153
154
155
156
157
158
    while (((volatile int*)h_pinned_finished_sum_)[0] == -1) {};
    sync_check_cuda_error();

    *should_stop = h_pinned_finished_sum_[0] == batch_size * beam_width;
}

lvhan028's avatar
lvhan028 committed
159
}  // namespace turbomind