gen_relative_pos_bias.cu 14.9 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "cublas_v2.h"
#include "gen_relative_pos_bias.h"
#include "reduce_kernel_utils.cuh"
lvhan028's avatar
lvhan028 committed
20
21
#include "src/turbomind/kernels/activation_kernels.h"
#include "src/turbomind/utils/cuda_utils.h"
Li Zhang's avatar
Li Zhang committed
22
23
#include <cstdio>

lvhan028's avatar
lvhan028 committed
24
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

/*******************  invokeGenRelativePosBias  ***********************/
// relative_position_bias_table is [(2*window_size-1)*(2*window_size-1), headNum]
// relative_position_bias is [head_num, window_size^2, window_size^2]
// grid(window_size*window_size, head_num)
// block(window_size*window_size)

template<typename T, typename Tindex>
__global__ void gen_relative_pos_bias(T*            relative_position_bias,
                                      const T*      relative_position_bias_table,
                                      const Tindex* relative_position_bias_index,
                                      const int     window_size,
                                      const int     head_num)
{
    const int    h_in_window           = blockIdx.x / window_size;
    const int    w_in_window           = blockIdx.x % window_size;
    const int    h_in_token            = threadIdx.x / window_size;
    const int    w_in_token            = threadIdx.x % window_size;
    const int    head_idx              = blockIdx.y;
    const int    elements_per_window   = window_size * window_size;
    const size_t elements_per_window_2 = elements_per_window * elements_per_window;
    const size_t output_idx = head_idx * elements_per_window_2 + blockIdx.x * elements_per_window + threadIdx.x;
    if (output_idx < head_num * elements_per_window_2) {
        const Tindex idx_in_table =
            relative_position_bias_index[(h_in_window * window_size + w_in_window) * elements_per_window
                                         + h_in_token * window_size + w_in_token];
        relative_position_bias[output_idx] = relative_position_bias_table[idx_in_table * head_num + head_idx];
    }
}

template<typename T, typename Tindex>
void invokeGenRelativePosBias(T*            relative_position_bias,
                              const T*      relative_position_bias_table,
                              const Tindex* relative_position_bias_index,
                              const int     window_size,
                              const int     head_num,
                              cudaStream_t  stream)
{
    dim3 grid(window_size * window_size, head_num);
    dim3 block(window_size * window_size);

    if (block.x > 1024) {
        printf("[ERROR][invokeGenRelativePosBias] window_size*window_size > 1024.\n");
        exit(-1);
    }

    gen_relative_pos_bias<<<grid, block, 0, stream>>>(
        relative_position_bias, relative_position_bias_table, relative_position_bias_index, window_size, head_num);
}

/*******************  invokeGenRelativePosBiasV2  ***********************/
template<typename T, typename Tindex>
void invokeGenRelativePosBiasV2(T*            relative_position_bias,
                                const T*      relative_coords_table,
                                const Tindex* relative_position_bias_index,
                                const T*      cpb_mlp_weight1,
                                const T*      cpb_mlp_bias1,
                                const T*      cpb_mlp_weight2,
                                const int     window_size,
                                const int     cpb_mlp_in_dim,
                                const int     cpb_mlp_out_dim,
                                const int     head_num,
                                cudaStream_t  stream)
{

    dim3 grid(window_size * window_size, head_num);
    dim3 block(window_size * window_size);

    if (block.x > 1024) {
        printf("[ERROR][invokeGenRelativePosBias] window_size*window_size > 1024.\n");
        exit(-1);
    }

    T* relative_position_bias_table;
    check_cuda_error(cudaMalloc(&relative_position_bias_table,
                                ((2 * window_size - 1) * (2 * window_size - 1) * head_num) * sizeof(T)));
    T* cpb_mlp_1;
    check_cuda_error(
        cudaMalloc(&cpb_mlp_1, ((2 * window_size - 1) * (2 * window_size - 1) * cpb_mlp_out_dim) * sizeof(T)));
    cublasHandle_t cublas_handle;
    check_cuda_error(cublasCreate(&cublas_handle));

    int            m     = (2 * window_size - 1) * (2 * window_size - 1);
    T              alpha = (T)1.0f;
    T              beta  = (T)0.0f;
    cudaDataType_t type  = std::is_same<float, T>::value ? CUDA_R_32F : CUDA_R_16F;
#if (CUDART_VERSION >= 11000)
    cublasComputeType_t compute_type = std::is_same<float, T>::value ? CUBLAS_COMPUTE_32F : CUBLAS_COMPUTE_16F;
#else
    cudaDataType_t compute_type = std::is_same<float, T>::value ? CUDA_R_32F : CUDA_R_16F;
#endif
    cublasGemmAlgo_t algo = std::is_same<float, T>::value ? CUBLAS_GEMM_DEFAULT : CUBLAS_GEMM_DEFAULT_TENSOR_OP;
    check_cuda_error(cublasGemmEx(cublas_handle,
                                  CUBLAS_OP_T,
                                  CUBLAS_OP_N,
                                  cpb_mlp_out_dim,
                                  m,
                                  cpb_mlp_in_dim,
                                  &alpha,
                                  cpb_mlp_weight1,
                                  type,
                                  cpb_mlp_in_dim,
                                  relative_coords_table,
                                  type,
                                  cpb_mlp_in_dim,
                                  &beta,
                                  cpb_mlp_1,
                                  type,
                                  cpb_mlp_out_dim,
                                  compute_type,
                                  algo));

    invokeGenericActivation<ReluActivation, T, T>(
        cpb_mlp_1, cpb_mlp_bias1, nullptr, nullptr, nullptr, nullptr, m, cpb_mlp_out_dim, 0, nullptr, nullptr, stream);

    check_cuda_error(cublasGemmEx(cublas_handle,
                                  CUBLAS_OP_T,
                                  CUBLAS_OP_N,
                                  head_num,
                                  m,
                                  cpb_mlp_out_dim,
                                  &alpha,
                                  cpb_mlp_weight2,
                                  type,
                                  cpb_mlp_out_dim,
                                  cpb_mlp_1,
                                  type,
                                  cpb_mlp_out_dim,
                                  &beta,
                                  relative_position_bias_table,
                                  type,
                                  head_num,
                                  compute_type,
                                  algo));

    gen_relative_pos_bias<<<grid, block, 0, stream>>>(
        relative_position_bias, relative_position_bias_table, relative_position_bias_index, window_size, head_num);

    invokeSigmoid(
        relative_position_bias, window_size * window_size * window_size * window_size * head_num, 16.0f, stream);
    check_cuda_error(cudaFree(relative_position_bias_table));
    check_cuda_error(cudaFree(cpb_mlp_1));
    check_cuda_error(cublasDestroy(cublas_handle));
}

/*******************  instantiation  ***********************/

template void invokeGenRelativePosBias(float*       relative_position_bias,
                                       const float* relative_position_bias_table,
                                       const int*   relative_position_bias_index,
                                       const int    window_size,
                                       const int    head_num,
                                       cudaStream_t stream);

template void invokeGenRelativePosBias(half*        relative_position_bias,
                                       const half*  relative_position_bias_table,
                                       const int*   relative_position_bias_index,
                                       const int    window_size,
                                       const int    head_num,
                                       cudaStream_t stream);

template void invokeGenRelativePosBias(float*         relative_position_bias,
                                       const float*   relative_position_bias_table,
                                       const int64_t* relative_position_bias_index,
                                       const int      window_size,
                                       const int      head_num,
                                       cudaStream_t   stream);

template void invokeGenRelativePosBias(half*          relative_position_bias,
                                       const half*    relative_position_bias_table,
                                       const int64_t* relative_position_bias_index,
                                       const int      window_size,
                                       const int      head_num,
                                       cudaStream_t   stream);

__host__ __device__ uint32_t pow2_rounddown(uint32_t x)
{
    x |= x >> 1;
    x |= x >> 2;
    x |= x >> 4;
    x |= x >> 8;
    x |= x >> 16;
    x >>= 1;
    return x + 1;
}

template<typename T>
__global__ void generate_alibi_slopes(T* alibi_slopes, const size_t num_heads)
{
    if (threadIdx.x < num_heads) {
        // The nearest power of 2 greater than num_heads followed by HF's implementation.
        int num_heads_pow2 = pow2_rounddown(num_heads);
        // Loop over the attention head.
        for (int h = threadIdx.x; h < num_heads; h += blockDim.x) {
            if (h < num_heads_pow2) {
                alibi_slopes[h] = static_cast<T>(powf(powf(0.5f, powf(0.5f, log2f(num_heads_pow2) - 3.f)), h + 1));
            }
            else {
                alibi_slopes[h] = static_cast<T>(
                    powf(powf(0.5f, powf(0.5f, log2f(num_heads_pow2 << 1) - 3.f)), (h - num_heads_pow2) * 2 + 1));
            }
        }
    }
}

template<typename T>
void invokeBuildAlibiSlopes(T* alibi_slopes, const size_t num_heads, cudaStream_t stream)
{
    // Generate the slopes of a linear attention linear bias.
    //
    // Paper: https://arxiv.org/abs/2108.12409
    // HF's implementation
    //   https://github.com/huggingface/transformers/blob/56ef0ba44765162f830873c140bd40bdc975cc34/src/transformers/models/bloom/modeling_bloom.py#L86
    // Author's implementation
    //   https://github.com/ofirpress/attention_with_linear_biases/blob/02aa87e7a29e9340efd28d6d169018eafb3aa57a/fairseq/models/transformer.py#L760
    //
    // alibi_slopes: [num_heads],
    //     strictly follows how HF implements. which treats power-of-2 heads, and non-power-of-2 heads differently.
    //     what paper generates differs with HF's when number of heads is not a power of 2.
    // num_heads: the number of attention heads.
    // stream: a cuda stream.

    dim3 block(min((int)num_heads, 512));
    generate_alibi_slopes<<<1, block, 0, stream>>>(alibi_slopes, num_heads);
}

template void invokeBuildAlibiSlopes(float* alibi_slopes, const size_t num_heads, cudaStream_t stream);
template void invokeBuildAlibiSlopes(half* alibi_slopes, const size_t num_heads, cudaStream_t stream);
#ifdef ENABLE_BF16
template void invokeBuildAlibiSlopes(__nv_bfloat16* alibi_slopes, const size_t num_heads, cudaStream_t stream);
#endif

template void invokeGenRelativePosBiasV2(float*       relative_position_bias,
                                         const float* relative_coords_table,
                                         const int*   relative_position_bias_index,
                                         const float* cpb_mlp_weight1,
                                         const float* cpb_mlp_bias1,
                                         const float* cpb_mlp_weight2,
                                         const int    window_size,
                                         const int    cpb_mlp_in_dim,
                                         const int    cpb_mlp_out_dim,
                                         const int    head_num,
                                         cudaStream_t stream);

template void invokeGenRelativePosBiasV2(half*        relative_position_bias,
                                         const half*  relative_coords_table,
                                         const int*   relative_position_bias_index,
                                         const half*  cpb_mlp_weight1,
                                         const half*  cpb_mlp_bias1,
                                         const half*  cpb_mlp_weight2,
                                         const int    window_size,
                                         const int    cpb_mlp_in_dim,
                                         const int    cpb_mlp_out_dim,
                                         const int    head_num,
                                         cudaStream_t stream);

template void invokeGenRelativePosBiasV2(float*         relative_position_bias,
                                         const float*   relative_coords_table,
                                         const int64_t* relative_position_bias_index,
                                         const float*   cpb_mlp_weight1,
                                         const float*   cpb_mlp_bias1,
                                         const float*   cpb_mlp_weight2,
                                         const int      window_size,
                                         const int      cpb_mlp_in_dim,
                                         const int      cpb_mlp_out_dim,
                                         const int      head_num,
                                         cudaStream_t   stream);

template void invokeGenRelativePosBiasV2(half*          relative_position_bias,
                                         const half*    relative_coords_table,
                                         const int64_t* relative_position_bias_index,
                                         const half*    cpb_mlp_weight1,
                                         const half*    cpb_mlp_bias1,
                                         const half*    cpb_mlp_weight2,
                                         const int      window_size,
                                         const int      cpb_mlp_in_dim,
                                         const int      cpb_mlp_out_dim,
                                         const int      head_num,
                                         cudaStream_t   stream);
lvhan028's avatar
lvhan028 committed
304
}  // namespace turbomind