bert_preprocess_kernels.h 4.73 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once
lvhan028's avatar
lvhan028 committed
18
19
#include "src/turbomind/kernels/gen_relative_pos_bias.h"
#include "src/turbomind/utils/cuda_utils.h"
Li Zhang's avatar
Li Zhang committed
20
21
22
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#ifdef ENABLE_FP8
lvhan028's avatar
lvhan028 committed
23
#include "src/turbomind/utils/cuda_fp8_utils.h"
Li Zhang's avatar
Li Zhang committed
24
25
#endif  // ENABLE_FP8

lvhan028's avatar
lvhan028 committed
26
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

void invokeGetPaddingOffsetAndCuSeqLens(size_t*      h_pinned_token_num,
                                        size_t*      h_token_num,
                                        int*         tmp_mask_offset,
                                        int*         cu_seqlens,
                                        const int*   sequence_length,
                                        const int    batch_size,
                                        const int    max_seq_len,
                                        cudaStream_t stream);

inline void invokeGetPaddingOffset(size_t*      h_pinned_token_num,
                                   size_t*      h_token_num,
                                   int*         tmp_mask_offset,
                                   const int*   sequence_length,
                                   const int    batch_size,
                                   const int    max_seq_len,
                                   cudaStream_t stream)
{
    invokeGetPaddingOffsetAndCuSeqLens(
        h_pinned_token_num, h_token_num, tmp_mask_offset, nullptr, sequence_length, batch_size, max_seq_len, stream);
}

template<typename T>
void invokeBuildEncoderAttentionMask(
    T* attention_mask, const int* sequence_lengths, const int batch_size, const int max_seq_len, cudaStream_t stream);

void invokeGetTrtPaddingOffset(int*         trt_mha_padding_offset,
                               const int*   sequence_length,
                               const int    request_batch_size,
                               cudaStream_t stream);

void invokeGetTrtPaddingOffset(int*         trt_mha_padding_offset,
                               const int*   sequence_length,
                               const int    request_batch_size,
                               const int    request_seq_len,
                               cudaStream_t stream);

template<typename T>
void invokeRebuildPadding(
    T* dst, const T* src, const int* padding_offset, const int token_num, const int hidden_dim, cudaStream_t stream);

template<typename T>
void invokeRemovePadding(
    T* dst, const T* src, const int* padding_offset, const int token_num, const int hidden_dim, cudaStream_t stream);

template<typename T>
void invokeBuildRelativeAttentionBias(T*                          relative_attention_bias,
                                      const T*                    relative_attention_bias_table,
                                      const int                   head_num,
                                      const int                   seq_len,
                                      const int                   num_bucket,
                                      const bool                  is_bidirectional,
                                      const int                   max_distance,
                                      const PositionEmbeddingType position_embedding_type,
                                      cudaStream_t                stream);

template<typename T_OUT, typename T_IN>
struct getLastTokenDequantizeParam {
    T_OUT* const       output;
    T_IN const* const  input;
    float const* const input_scale;

    const int    batch_size;
    const int    max_seq_len;
    const int    d_model;
    cudaStream_t stream;
};

template<typename T_OUT, typename T_IN>
void invokeGetLastTokenDequantize(getLastTokenDequantizeParam<T_OUT, T_IN> param);

#ifdef ENABLE_FP8
template<typename T_OUT, typename T_IN, QUANTIZE_MODE quantize_mode>
struct QuantizeMatrixRebuildPaddingParam {
    T_OUT*       dst;
    const T_IN*  src;
    const int*   padding_offset;
    const int    token_num;
    const int    d_model;
    const float* scale;
    cudaStream_t stream;
};

template<typename T_OUT, typename T_IN, QUANTIZE_MODE quantize_mode>
void invokeQuantizeMatrixRebuildPadding(QuantizeMatrixRebuildPaddingParam<T_OUT, T_IN, quantize_mode> param);
#endif  // ENABLE_FP8

lvhan028's avatar
lvhan028 committed
114
}  // namespace turbomind