flash_api.cpp 5.59 KB
Newer Older
q.yao's avatar
q.yao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/******************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/
// modify from: https://github.com/Dao-AILab/flash-attention

#include "flash.h"
#include "src/turbomind/models/llama/llama_kernels.h"
#include "static_switch.h"
#include <cuda_runtime.h>
#include <cutlass/numeric_types.h>
#include <math.h>

void run_mha_fwd(Flash_fwd_params& params, cudaStream_t stream)
{
q.yao's avatar
q.yao committed
15
    FP16_SWITCH(!params.is_bf16,
q.yao's avatar
q.yao committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
                [&] { FWD_HEADDIM_SWITCH(params.d, [&] { run_mha_fwd_<elem_type, kHeadDim>(params, stream); }); });
}

namespace turbomind {

static constexpr int FMHA_VERSION = 2;

template<typename T>
class FlashAttentionOpImpl<T, FMHA_VERSION> {

public:
    using AttentionLayout = BaseAttentionLayout<T>;
    using Params          = BaseAttentionParams<T>;

public:
    FlashAttentionOpImpl(int batch_size, int head_num, int key_len, int seq_len, int size_per_head);
    ~FlashAttentionOpImpl();

    int get_workspace_size() const;

    void operator()(Params& params, cudaStream_t st) const;

private:
    class impl;
    std::unique_ptr<impl> pimpl;
};

template<typename T>
class FlashAttentionOpImpl<T, FMHA_VERSION>::impl {

private:
    using scalar_t =
        typename std::conditional_t<std::is_same<half, typename std::decay<T>::type>::value, cutlass::half_t, T>;
    using Params = typename FlashAttentionOpImpl<T, FMHA_VERSION>::Params;

    int batch_size_;
    int head_num_;
    int key_len_;
    int seq_len_;
    int size_per_head_;

public:
    impl(int batch_size, int head_num, int key_len, int seq_len, int size_per_head):
        batch_size_(batch_size),
        head_num_(head_num),
        key_len_(key_len),
        seq_len_(seq_len),
        size_per_head_(size_per_head)
    {
    }

    ~impl() {}

    int get_workspace_size() const
    {
        return 0;
    }

    void operator()(Params& params, cudaStream_t st) const
    {
        const float      qk_scale = static_cast<float>(1.f / sqrtf(size_per_head_ * 1.f));
        Flash_fwd_params fwd_params;
        memset(&fwd_params, 0, sizeof(fwd_params));

        fwd_params.q_ptr = reinterpret_cast<void*>(params.query);
        fwd_params.k_ptr = reinterpret_cast<void*>(params.key);
        fwd_params.v_ptr = reinterpret_cast<void*>(params.val);

        fwd_params.k_batched_ptr    = reinterpret_cast<void**>(params.layout_k.batch_seqs);
        fwd_params.v_batched_ptr    = reinterpret_cast<void**>(params.layout_v.batch_seqs);
        fwd_params.k_batched_offset = params.layout_k.batch_seqs_offset;
        fwd_params.v_batched_offset = params.layout_v.batch_seqs_offset;

        fwd_params.q_batch_stride = params.layout_q.stride_batch;
        fwd_params.k_batch_stride = params.layout_k.stride_batch;
        fwd_params.v_batch_stride = params.layout_v.stride_batch;
        fwd_params.q_row_stride   = params.layout_q.stride_seq;
        fwd_params.k_row_stride   = params.layout_k.stride_seq;
        fwd_params.v_row_stride   = params.layout_v.stride_seq;
        fwd_params.q_head_stride  = params.layout_q.stride_head;
        fwd_params.v_head_stride  = params.layout_v.stride_head;
        fwd_params.k_head_stride  = params.layout_k.stride_head;

        fwd_params.h           = head_num_;
        fwd_params.h_k         = head_num_ / params.group_size;
        fwd_params.h_h_k_ratio = params.group_size;

        fwd_params.o_ptr = reinterpret_cast<void*>(params.attn_out);

        fwd_params.o_batch_stride = params.layout_o.stride_batch;
        fwd_params.o_row_stride   = params.layout_o.stride_seq;
        fwd_params.o_head_stride  = params.layout_o.stride_head;

        fwd_params.p_ptr = nullptr;

        fwd_params.b                = batch_size_;
        fwd_params.seqlen_q         = seq_len_;
        fwd_params.seqlen_k         = key_len_;
        fwd_params.d                = size_per_head_;
        fwd_params.seqlen_q_rounded = 0;
        fwd_params.seqlen_k_rounded = 0;

        fwd_params.scale_softmax      = qk_scale;
        fwd_params.scale_softmax_log2 = qk_scale * M_LOG2E;

        fwd_params.cu_seqlens_q = params.cu_seqlens_q;
        fwd_params.cu_seqlens_k = params.cu_seqlens_k;

124
125
126
        fwd_params.actual_seqlen_q = params.actual_seqlen_q;
        fwd_params.actual_seqlen_k = params.actual_seqlen_k;

q.yao's avatar
q.yao committed
127
128
        fwd_params.blockmask = reinterpret_cast<void*>(params.mask);

q.yao's avatar
q.yao committed
129
130
131
132
133
#ifdef ENABLE_BF16
        fwd_params.is_bf16 = std::is_same<T, __nv_bfloat16>::value;
#else
        fwd_params.is_bf16 = false;
#endif
q.yao's avatar
q.yao committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        fwd_params.is_causal = true;

        fwd_params.q_enable_seqlen = params.layout_q.use_seqlens;
        fwd_params.o_enable_seqlen = params.layout_o.use_seqlens;

        run_mha_fwd(fwd_params, st);
    }
};

template<typename T>
FlashAttentionOpImpl<T, FMHA_VERSION>::FlashAttentionOpImpl(
    int batch_size, int head_num, int key_len, int seq_len, int size_per_head):
    pimpl{std::make_unique<FlashAttentionOpImpl<T, FMHA_VERSION>::impl>(
        batch_size, head_num, key_len, seq_len, size_per_head)}
{
}

template<typename T>
FlashAttentionOpImpl<T, FMHA_VERSION>::~FlashAttentionOpImpl()
{
}

template<typename T>
int FlashAttentionOpImpl<T, FMHA_VERSION>::get_workspace_size() const
{
    return pimpl->get_workspace_size();
}

template<typename T>
void FlashAttentionOpImpl<T, FMHA_VERSION>::operator()(Params& params, cudaStream_t st) const
{
    pimpl->operator()(params, st);
}

template class FlashAttentionOpImpl<float, FMHA_VERSION>;
template class FlashAttentionOpImpl<half, FMHA_VERSION>;
q.yao's avatar
q.yao committed
170
171
172
#ifdef ENABLE_BF16
template class FlashAttentionOpImpl<__nv_bfloat16, FMHA_VERSION>;
#endif
q.yao's avatar
q.yao committed
173
174

}  // namespace turbomind