LlamaDecoderLayerWeight.cc 14.7 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Li Zhang's avatar
Li Zhang committed
18
// Modified from
lvhan028's avatar
lvhan028 committed
19
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/models/multi_gpu_gpt/ParallelGptDecoderLayerWeight.cc
Li Zhang's avatar
Li Zhang committed
20

lvhan028's avatar
lvhan028 committed
21
#include "src/turbomind/models/llama/LlamaDecoderLayerWeight.h"
22
#include "src/turbomind/models/llama/LlamaDenseWeight.h"
lvhan028's avatar
lvhan028 committed
23
24
#include "src/turbomind/utils/logger.h"
#include "src/turbomind/utils/memory_utils.h"
25
#include <filesystem>
Li Zhang's avatar
Li Zhang committed
26

lvhan028's avatar
lvhan028 committed
27
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
28
29

template<typename T>
30
31
32
LlamaDecoderLayerWeight<T>::LlamaDecoderLayerWeight(size_t     head_num,
                                                    size_t     kv_head_num,
                                                    size_t     size_per_head,
Li Zhang's avatar
Li Zhang committed
33
34
                                                    size_t     inter_size,
                                                    WeightType weight_type,
35
                                                    int        group_size,
Li Zhang's avatar
Li Zhang committed
36
37
38
                                                    bool       attn_bias,
                                                    size_t     tensor_para_size,
                                                    size_t     tensor_para_rank):
39
40
41
42
    head_num_(head_num),
    kv_head_num_(kv_head_num),
    size_per_head_(size_per_head),
    hidden_units_(head_num * size_per_head),
Li Zhang's avatar
Li Zhang committed
43
44
    inter_size_(inter_size),
    weight_type_(weight_type),
Li Zhang's avatar
Li Zhang committed
45
    attn_bias_(attn_bias),
Li Zhang's avatar
Li Zhang committed
46
47
48
    tensor_para_size_(tensor_para_size),
    tensor_para_rank_(tensor_para_rank)
{
Li Zhang's avatar
Li Zhang committed
49
    self_attn_weights.qkv.input_dims  = hidden_units_;
50
    self_attn_weights.qkv.output_dims = (head_num + 2 * kv_head_num) * size_per_head / tensor_para_size_;
Li Zhang's avatar
Li Zhang committed
51
    self_attn_weights.qkv.type        = weight_type;
52
    self_attn_weights.qkv.group_size  = group_size;
Li Zhang's avatar
Li Zhang committed
53
54
55
56

    self_attn_weights.output.input_dims  = hidden_units_ / tensor_para_size_;
    self_attn_weights.output.output_dims = hidden_units_;
    self_attn_weights.output.type        = weight_type;
57
    self_attn_weights.output.group_size  = group_size;
Li Zhang's avatar
Li Zhang committed
58

Li Zhang's avatar
Li Zhang committed
59
60
61
    ffn_weights.gating.input_dims  = hidden_units_;
    ffn_weights.gating.output_dims = inter_size_ / tensor_para_size_;
    ffn_weights.gating.type        = weight_type;
62
    ffn_weights.gating.group_size  = group_size;
Li Zhang's avatar
Li Zhang committed
63
64
65
66

    ffn_weights.intermediate.input_dims  = hidden_units_;
    ffn_weights.intermediate.output_dims = inter_size_ / tensor_para_size_;
    ffn_weights.intermediate.type        = weight_type;
67
68
69
70
71
72
    ffn_weights.intermediate.group_size  = group_size;

    ffn_weights.fused_gating_intermediate.input_dims  = hidden_units_;
    ffn_weights.fused_gating_intermediate.output_dims = inter_size_ / tensor_para_size_ * 2;
    ffn_weights.fused_gating_intermediate.type        = weight_type;
    ffn_weights.fused_gating_intermediate.group_size  = group_size;
Li Zhang's avatar
Li Zhang committed
73
74
75
76

    ffn_weights.output.input_dims  = inter_size_ / tensor_para_size_;
    ffn_weights.output.output_dims = hidden_units_;
    ffn_weights.output.type        = weight_type;
77
    ffn_weights.output.group_size  = group_size;
Li Zhang's avatar
Li Zhang committed
78
79
80
81
82
83
84
85
    mallocWeights();
}

template<typename T>
void freeWeights(LlamaDenseWeight<T>& weights)
{
    cudaFree(weights.kernel);
    cudaFree(weights.bias);
86
    cudaFree(weights.scales_and_zeros);
Li Zhang's avatar
Li Zhang committed
87

88
89
90
    weights.kernel           = nullptr;
    weights.bias             = nullptr;
    weights.scales_and_zeros = nullptr;
Li Zhang's avatar
Li Zhang committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
}

template<typename T>
void mallocWeights(LlamaDenseWeight<T>& weights, bool bias)
{
    if (bias) {
        deviceMalloc((T**)&weights.bias, weights.output_dims);
    }
    const size_t bit_size = getBitSize(weights.type);
    if (bit_size >= 16) {  // fp16, fp32
        deviceMalloc((T**)&weights.kernel, weights.input_dims * weights.output_dims);
    }
    else {  // int8, int4
        const int factor = sizeof(float) * 8 / bit_size;
        FT_CHECK(weights.input_dims % factor == 0);
106
107
108
109
        deviceMalloc((int**)&weights.kernel, weights.input_dims * weights.output_dims / factor);
        deviceMemSetZero((int*)weights.kernel, weights.input_dims * weights.output_dims / factor);
        // interleaved scales/zeros
        deviceMalloc((T**)&weights.scales_and_zeros, weights.input_dims / weights.group_size * weights.output_dims * 2);
Li Zhang's avatar
Li Zhang committed
110
111
112
    }
}

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
template<typename FirstArg, typename... Args>
std::string concat(FirstArg&& first, Args&&... args)
{
    std::stringstream stream;
    stream << first;
    ((stream << "." << args), ...);
    return stream.str();
}

template<typename T>
void getWeightTensor(LlamaDenseWeight<T>& weights, bool bias, const std::string& prefix, TensorMap& output)
{
    auto get_name = [=](const std::string& name) { return concat(prefix, name); };

    if (bias) {
        output.insert(get_name("bias"),
                      Tensor{MEMORY_GPU, getTensorType<T>(), {weights.output_dims * sizeof(T)}, weights.bias});
    }
    const size_t bit_size = getBitSize(weights.type);
    if (bit_size >= 16) {
        output.insert(get_name("weight"),
                      Tensor{MEMORY_GPU,
                             getTensorType<T>(),
                             {weights.input_dims * weights.output_dims * sizeof(T)},
                             weights.kernel});
    }
    else {  // int8, int4
        const int factor = sizeof(float) * 8 / bit_size;
        output.insert(get_name("qweight"),
                      Tensor{MEMORY_GPU,
                             TYPE_INT32,
                             {weights.input_dims * weights.output_dims * sizeof(int) / factor},
                             weights.kernel});
        output.insert(get_name("scales_zeros"),
                      Tensor{MEMORY_GPU,
                             getTensorType<T>(),
                             {weights.input_dims / weights.group_size * weights.output_dims * 2 * sizeof(T)},
                             weights.scales_and_zeros});
    }
}

Li Zhang's avatar
Li Zhang committed
154
template<typename T>
155
156
157
158
159
160
161
void loadWeights(LlamaDenseWeight<T>& w,
                 std::string          prefix,
                 int                  rank,
                 FtCudaDataType       model_file_type,
                 size_t               tensor_para_size,
                 int                  slice_dim   = 0,
                 std::vector<size_t>  slice_shape = {})
Li Zhang's avatar
Li Zhang committed
162
{
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    auto       max_prefix = prefix + "." + std::to_string(tensor_para_size - 1);
    const auto type       = model_file_type;

    bool enable_slice = true;
    // Disable slice if tensor param rank is 1
    if (tensor_para_size <= 1) {
        enable_slice = false;
    }
    else {
        // Disable slice if weight has already been sliced
        if (std::filesystem::exists(max_prefix + ".weight") || std::filesystem::exists(max_prefix + ".qweight")) {
            TM_LOG_DEBUG("TP weight exists. Disable runtime TP.");
            enable_slice = false;
        }
    }

    size_t dim0 = w.input_dims;
    size_t dim1 = w.output_dims;
    if (enable_slice) {
        // multiple tp size for slice stride
        if (slice_dim == 0) {
            dim0 = dim0 * tensor_para_size;
            if (slice_shape.size() == 0) {
                slice_shape = {dim0};
            }
        }
        else {
            dim1 = dim1 * tensor_para_size;
            if (slice_shape.size() == 0) {
                slice_shape = {dim1};
            }
        }

        prefix += "." + std::to_string(0);
    }
    else {
        prefix += "." + std::to_string(rank);
    }
Li Zhang's avatar
Li Zhang committed
201
202

    if (w.bias) {
203
204
205
206
        std::vector<ConcateSlice> bias_slices{};
        if (enable_slice) {
            if (slice_dim == 1) {
                size_t       start = 0;
Chen Xin's avatar
Chen Xin committed
207
208
                ConcateSlice slice0{{{0, 1}}};
                ConcateSlice slice1{{{}}};
209
210
211
212
213
214
215
216
217
                for (auto len : slice_shape) {
                    size_t stride = len / tensor_para_size;
                    slice1.slices.push_back({start + stride * rank, start + stride * (rank + 1)});
                    start += len;
                }
                bias_slices = {slice0, slice1};
            }
        }
        loadWeightFromBin((T*)w.bias, {1, dim1}, prefix + ".bias", type, bias_slices);
Li Zhang's avatar
Li Zhang committed
218
219
220
    }
    const size_t bit_size = getBitSize(w.type);
    if (bit_size >= 16) {  // fp16, fp32
221
222
223
224
        std::vector<ConcateSlice> weight_slices{};
        if (enable_slice) {
            if (slice_dim == 1) {
                size_t       start = 0;
Chen Xin's avatar
Chen Xin committed
225
226
                ConcateSlice slice0{{{0, dim0}}};
                ConcateSlice slice1{{{}}};
227
228
229
230
231
232
233
234
235
                for (auto len : slice_shape) {
                    size_t stride = len / tensor_para_size;
                    slice1.slices.push_back({start + stride * rank, start + stride * (rank + 1)});
                    start += len;
                }
                weight_slices = {slice0, slice1};
            }
            else {
                size_t       start = 0;
Chen Xin's avatar
Chen Xin committed
236
237
                ConcateSlice slice0{{}};
                ConcateSlice slice1{{{0, dim1}}};
238
239
240
241
242
243
244
245
246
                for (auto len : slice_shape) {
                    size_t stride = len / tensor_para_size;
                    slice0.slices.push_back({start + stride * rank, start + stride * (rank + 1)});
                    start += len;
                }
                weight_slices = {slice0, slice1};
            }
        }
        loadWeightFromBin((T*)w.kernel, {dim0, dim1}, prefix + ".weight", type, weight_slices);
Li Zhang's avatar
Li Zhang committed
247
248
249
    }
    else {  // int8, int4
        const int factor = sizeof(float) * 8 / bit_size;
250

251
252
253
254
255
256
257
258
        FT_CHECK(dim1 % factor == 0);

        std::vector<size_t> w_shape{dim0, dim1 / factor * sizeof(uint32_t)};
        loadWeightFromBin((int8_t*)w.kernel, w_shape, prefix + ".qweight", FtCudaDataType::INT8, {});

        const size_t group_count = w.group_size > 0 ? dim0 / w.group_size : 1;

        loadWeightFromBin((half*)w.scales_and_zeros, {group_count, dim1 * 2}, prefix + ".scales_zeros", type, {});
Li Zhang's avatar
Li Zhang committed
259
260
261
262
263
264
265
266
267
    }
}

template<typename T>
void LlamaDecoderLayerWeight<T>::mallocWeights()
{
    deviceMalloc((T**)&self_attn_norm_weights, hidden_units_);
    deviceMalloc((T**)&ffn_norm_weights, hidden_units_);

lvhan028's avatar
lvhan028 committed
268
269
    turbomind::mallocWeights(self_attn_weights.qkv, attn_bias_);
    turbomind::mallocWeights(self_attn_weights.output, attn_bias_);
270
    self_attn_weights.past_kv_scale = {1.f, 0.f, 1.f, 0.f};
Li Zhang's avatar
Li Zhang committed
271

272
273
274
275
276
277
278
279
    if (weight_type_ == WeightType::kINT4) {
        turbomind::mallocWeights(ffn_weights.fused_gating_intermediate, false);
    }
    else {
        turbomind::mallocWeights(ffn_weights.gating, false);
        turbomind::mallocWeights(ffn_weights.intermediate, false);
    }

lvhan028's avatar
lvhan028 committed
280
    turbomind::mallocWeights(ffn_weights.output, false);
Li Zhang's avatar
Li Zhang committed
281
282
283
284
285
286
287
288
289
290
}

template<typename T>
LlamaDecoderLayerWeight<T>::~LlamaDecoderLayerWeight()
{
    cudaFree((void*)self_attn_norm_weights);
    cudaFree((void*)ffn_norm_weights);

    freeWeights(self_attn_weights.qkv);
    freeWeights(self_attn_weights.output);
291
292
293
294
295
296
297
298
299

    if (weight_type_ == WeightType::kINT4) {
        freeWeights(ffn_weights.fused_gating_intermediate);
    }
    else {
        freeWeights(ffn_weights.gating);
        freeWeights(ffn_weights.intermediate);
    }

Li Zhang's avatar
Li Zhang committed
300
301
302
303
304
305
306
307
308
309
310
311
312
    freeWeights(ffn_weights.output);
}

template<typename T>
void LlamaDecoderLayerWeight<T>::loadModel(std::string dir_path, FtCudaDataType model_file_type)
{
    const auto rank_spec = std::to_string(tensor_para_rank_);
    const auto type      = model_file_type;

    loadWeightFromBin(
        (T*)self_attn_norm_weights, {hidden_units_}, dir_path + ".attention_norm.weight", model_file_type);
    loadWeightFromBin((T*)ffn_norm_weights, {hidden_units_}, dir_path + ".ffn_norm.weight", model_file_type);

313
314
315
316
317
318
319
    loadWeights(self_attn_weights.qkv,
                dir_path + ".attention.w_qkv",
                tensor_para_rank_,
                type,
                tensor_para_size_,
                1,
                {head_num_ * size_per_head_, kv_head_num_ * size_per_head_, kv_head_num_ * size_per_head_});
320

321
    loadWeights(self_attn_weights.output, dir_path + ".attention.wo", tensor_para_rank_, type, tensor_para_size_, 0);
322
323
324
325
326
327
328
329
330
331
332
333
334
335

    if (weight_type_ == WeightType::kINT4) {
        loadWeights(ffn_weights.fused_gating_intermediate,
                    dir_path + ".feed_forward.w13",
                    tensor_para_rank_,
                    type,
                    tensor_para_size_,
                    1);
    }
    else {
        loadWeights(ffn_weights.gating, dir_path + ".feed_forward.w1", tensor_para_rank_, type, tensor_para_size_, 1);
        loadWeights(
            ffn_weights.intermediate, dir_path + ".feed_forward.w3", tensor_para_rank_, type, tensor_para_size_, 1);
    }
336
    loadWeights(ffn_weights.output, dir_path + ".feed_forward.w2", tensor_para_rank_, type, tensor_para_size_, 0);
337
338

    // load kv_cache quant scale
AllentDan's avatar
AllentDan committed
339
340
    std::string   scale_path = dir_path + ".past_kv_scale." + rank_spec + ".weight";
    std::ifstream in(scale_path, std::ios::in);
341
342
    if (in.is_open()) {
        in.close();
343
        self_attn_weights.past_kv_scale = loadArrayFromBin({4}, scale_path);
AllentDan's avatar
AllentDan committed
344
    }
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
}

template<typename T>
TensorMap LlamaDecoderLayerWeight<T>::getParams(std::string prefix)
{
    TensorMap output;

    output.insert(concat(prefix, "attention_norm.weight"),
                  Tensor{MEMORY_GPU, getTensorType<T>(), {hidden_units_ * sizeof(T)}, self_attn_norm_weights});

    output.insert(concat(prefix, "ffn_norm.weight"),
                  Tensor{MEMORY_GPU, getTensorType<T>(), {hidden_units_ * sizeof(T)}, ffn_norm_weights});

    auto get_prefix = [=](std::string_view name) { return concat(prefix, name, tensor_para_rank_); };

    getWeightTensor(self_attn_weights.qkv, attn_bias_, get_prefix("attention.w_qkv"), output);

    getWeightTensor(self_attn_weights.output, attn_bias_, get_prefix("attention.wo"), output);

    if (weight_type_ == WeightType::kINT4) {
        getWeightTensor(ffn_weights.fused_gating_intermediate, false, get_prefix("feed_forward.w13"), output);
    }
AllentDan's avatar
AllentDan committed
367
    else {
368
369
        getWeightTensor(ffn_weights.gating, false, get_prefix("feed_forward.w1"), output);
        getWeightTensor(ffn_weights.intermediate, false, get_prefix("feed_forward.w3"), output);
370
    }
371
372
373
374
375
    getWeightTensor(ffn_weights.output, false, get_prefix("feed_forward.w2"), output);
    output.insert(concat(prefix, "past_kv_scale", tensor_para_rank_, "weight"),
                  Tensor{MEMORY_CPU, TYPE_FP32, {4 * sizeof(float)}, self_attn_weights.past_kv_scale.data()});

    return output;
Li Zhang's avatar
Li Zhang committed
376
377
378
379
}

template struct LlamaDecoderLayerWeight<float>;
template struct LlamaDecoderLayerWeight<half>;
q.yao's avatar
q.yao committed
380
381
382
#ifdef ENABLE_BF16
template struct LlamaDecoderLayerWeight<__nv_bfloat16>;
#endif
Li Zhang's avatar
Li Zhang committed
383

lvhan028's avatar
lvhan028 committed
384
}  // namespace turbomind