gemm_template.h 16.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
// Copyright (c) OpenMMLab. All rights reserved.

#pragma once

#include "common.h"
#include "cta_iterator.h"
#include "warp_iterator.h"
#include <cuda_pipeline_primitives.h>

namespace turbomind {

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// __inline__ __device__ void
// mma_m16n8k8_row_col(Array<float, 4>& d, const Array<half, 4>& a, const Array<half, 2>& b, Array<float, 4>& c)
// {
// #if TURBOMIND_ARCH_SM75
//     uint32_t const* A = reinterpret_cast<uint32_t const*>(&a);
//     uint32_t const* B = reinterpret_cast<uint32_t const*>(&b);
//     float const*    C = reinterpret_cast<float const*>(&c);
//     float*          D = reinterpret_cast<float*>(&d);
//     asm("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32  {%0,%1,%2,%3}, "
//         "{%4,%5}, {%6}, {%7,%8,%9,%10};\n"
//         : "=f"(D[0]), "=f"(D[1]), "=f"(D[2]), "=f"(D[3])
//         : "r"(A[0]), "r"(A[1]), "r"(B[0]), "f"(C[0]), "f"(C[1]), "f"(C[2]), "f"(C[3]));
// #else
//     assert(TURBOMIND_ARCH_SM75);
// #endif
// }
Li Zhang's avatar
Li Zhang committed
28

29
30
31
__inline__ __device__ void
mma_m16n8k16_row_col(Array<float, 4>& d, const Array<half, 8>& a, const Array<half, 4>& b, Array<float, 4>& c)
{
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// #if TURBOMIND_ARCH_SM80
//     uint32_t const* A = reinterpret_cast<uint32_t const*>(&a);
//     uint32_t const* B = reinterpret_cast<uint32_t const*>(&b);
//     float const*    C = reinterpret_cast<float const*>(&c);
//     float*          D = reinterpret_cast<float*>(&d);
//     asm("mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32  {%0,%1,%2,%3}, "
//         "{%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n"
//         : "=f"(D[0]), "=f"(D[1]), "=f"(D[2]), "=f"(D[3])
//         : "r"(A[0]), "r"(A[1]), "r"(A[2]), "r"(A[3]), "r"(B[0]), "r"(B[1]), "f"(C[0]), "f"(C[1]), "f"(C[2]), "f"(C[3]));
// #else
//     const Array<half, 4>* _a = (const Array<half, 4>*)&a;
//     const Array<half, 2>* _b = (const Array<half, 2>*)&b;
//     mma_m16n8k8_row_col(d, _a[0], _b[0], c);
//     mma_m16n8k8_row_col(d, _a[1], _b[1], d);
// #endif
47
48
}

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
__inline__ __device__ uint transpose_m8n8_b16_warp_shuffle(uint value, int lane_id)
{
    int    src_lane = lane_id / 8 + lane_id % 4 * 8;
    uint   u0       = __shfl_sync(0xffffffff, value, src_lane);
    uint   u1       = __shfl_sync(0xffffffff, value, src_lane + 4);
    short2 r;

    if (lane_id % 8 < 4) {
        r.x = ((short2&)u0).x;
        r.y = ((short2&)u1).x;
    }
    else {
        r.x = ((short2&)u0).y;
        r.y = ((short2&)u1).y;
    }
    return (uint&)r;
}

67
68
69
70
71
72
73
74
75
76
77
78
79
// #if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 8)
// __inline__ __device__ uint transpose_m8n8_b16_movmatrix(uint a)
// {
// #if TURBOMIND_ARCH_SM75
//     uint d;
//     asm("movmatrix.sync.aligned.m8n8.trans.b16 %0, %1;\n" : "=r"(d) : "r"(a));
//     return d;
// #else
//     assert(TURBOMIND_ARCH_SM75);
//     return 0;
// #endif
// }
// #endif
80
81
82
83

__inline__ __device__ uint transpose_m8n8_b16(uint a, int lane_id)
{

84
85
86
87
88
89
// #if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 8)
//     (void)lane_id;
//     return transpose_m8n8_b16_movmatrix(a);
// #else
//     return transpose_m8n8_b16_warp_shuffle(a, lane_id);
// #endif
90
}
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

namespace ops {

__inline__ __device__ float4 operator+(const float4& a, const float4& b)
{
    return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w};
}

__inline__ __device__ float2 operator+(const float2& a, const float2& b)
{
    return {a.x + b.x, a.y + b.y};
}

}  // namespace ops

template<int CTA_M,
         int CTA_N,
         int CTA_K,
         int WARP_M,
         int WARP_N,
         int WARP_K,
         int STAGES,
         int GROUP_SIZE,
         typename OutputOps>
struct Gemm {

    static constexpr int kWarpCountM = CTA_M / WARP_M;
    static constexpr int kWarpCountN = CTA_N / WARP_N;
    static constexpr int kWarpCountK = CTA_K / WARP_K;

    static constexpr int kWarpCountMN = kWarpCountM * kWarpCountN;
    static constexpr int kWarpCount   = kWarpCountMN * kWarpCountK;

    static constexpr int SLICES  = kWarpCountK;
    static constexpr int SLICE_K = CTA_K / SLICES;

    static_assert(SLICE_K % WARP_K == 0, "infeasible sliced-k setting");

    using IteratorA = turbomind::IteratorA<kWarpCountMN, CTA_M, CTA_N, CTA_K, STAGES, SLICES>;
    using IteratorQ = turbomind::IteratorQ<kWarpCountMN, CTA_M, CTA_N, CTA_K, STAGES, SLICES, GROUP_SIZE>;
    using IteratorB = turbomind::IteratorB<kWarpCountMN, CTA_M, CTA_N, CTA_K, STAGES, SLICES>;

    static constexpr int OP_M = 16;
    static constexpr int OP_N = 8;
    static constexpr int OP_K = 16;

    using WarpIterA = turbomind::WarpIteratorA<CTA_M,
                                               CTA_K,
                                               WARP_M,
                                               WARP_K,
                                               OP_M,
                                               OP_K,
                                               GROUP_SIZE,
                                               STAGES,
                                               IteratorA::kSizePerStage,
                                               IteratorQ::kSizePerStage>;

    using WarpIterB =
        turbomind::WarpIteratorB<CTA_N, CTA_K, WARP_N, WARP_K, OP_N, OP_K, IteratorB::kSmemPadCtaK, STAGES>;

    __device__ void warp_mma(IteratorA& iter_A,
                             IteratorQ& iter_Q,
                             IteratorB& iter_B,
                             WarpIterA& warp_iter_A,
                             WarpIterB& warp_iter_B,
                             float*     accum,
                             int        slice_id,
                             int&       gemm_iter)
    {

        constexpr int ITER_M = WARP_M / OP_M;
        constexpr int ITER_N = WARP_N / OP_N;
        constexpr int ITER_K = WARP_K / OP_K;

        constexpr int kBatchA = (IteratorA::kIterCount + ITER_K - 1) / ITER_K;
        constexpr int kBatchQ = (IteratorQ::kIterCount + ITER_K - 1) / ITER_K;
        constexpr int kBatchB = (IteratorB::kIterCount + ITER_K - 1) / ITER_K;

        auto frag_C_ptr = (Array<float, 4>*)accum;  // [ITER_N, ITER_M]

        PRAGMA_UNROLL
        for (int iter_k = 0; iter_k < ITER_K; ++iter_k) {

            warp_iter_A.load(warp_frag_A_[(iter_k + 1) % 2], (iter_k + 1) % ITER_K);
            warp_iter_B.load(warp_frag_B_[(iter_k + 1) % 2], (iter_k + 1) % ITER_K);

            auto warp_frag_A = warp_frag_A_[iter_k % 2];
            auto warp_frag_B = warp_frag_B_[iter_k % 2];

            PRAGMA_UNROLL
            for (int iter_m = 0; iter_m < ITER_M; ++iter_m) {
                PRAGMA_UNROLL
                for (int iter_n = 0; iter_n < ITER_N; ++iter_n) {
                    auto& frag_A = warp_frag_A[iter_m];
                    auto& frag_B = warp_frag_B[iter_n];
                    auto& frag_C = frag_C_ptr[iter_n * ITER_M + iter_m];
                    mma_m16n8k16_row_col(frag_C, frag_A, frag_B, frag_C);
                }
            }

            if (iter_k < ITER_K - 1) {
                iter_A.prefetch_batch(iter_k, kBatchA, gemm_iter > 0);
                iter_Q.prefetch_batch(iter_k, kBatchQ, gemm_iter > 0);
                iter_B.prefetch_batch(iter_k, kBatchB, gemm_iter > 0);
            }

            if (iter_k == ITER_K - 2) {
                iter_A.prefetch_batch(iter_k + 1, kBatchA, gemm_iter > 0);
                iter_Q.prefetch_batch(iter_k + 1, kBatchQ, gemm_iter > 0);
                iter_B.prefetch_batch(iter_k + 1, kBatchB, gemm_iter > 0);

                __pipeline_commit();
                __pipeline_wait_prior(STAGES - 2);
                sync_slice(slice_id);

                iter_A.next_stage();
                iter_Q.next_stage();
                iter_B.next_stage();

                warp_iter_A.next_stage();
                warp_iter_B.next_stage();

                --gemm_iter;
            }
        }
    }

    template<typename T, int N>
    __device__ static void copy(T (&dst)[N], const T (&src)[N])
    {
        PRAGMA_UNROLL
        for (int i = 0; i < N; ++i) {
            dst[i] = src[i];
        }
    }

    template<typename T, int N>
    __device__ static void clear(T (&dst)[N])
    {
        PRAGMA_UNROLL
        for (int i = 0; i < N; ++i) {
            dst[i] = T{};
        }
    }

    __device__ void sync_slice(int slice_id)
    {
        if constexpr (SLICES == 1) {
            __syncthreads();
        }
        else {
            constexpr int      SLICE_GROUP = (SLICES + 7) / 8;
            constexpr uint32_t num_threads = kWarpCountMN * WARP_SIZE;
            const uint32_t     barrier_id  = slice_id / SLICE_GROUP + 1;
245
            // asm volatile("bar.sync %0, %1;" : : "r"(barrier_id), "n"(num_threads));
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        }
    }

    __device__ void load_partial(float* tb_frag_C, const float* partial_C, int cta, int slice_id)
    {
        if (slice_id == 0) {
            PRAGMA_UNROLL
            for (int i = 0; i < CTA_N; ++i) {
                tb_frag_C[i] += partial_C[cta * CTA_N * CTA_M + i * CTA_M + threadIdx.x];
            }
        }
    }

    __device__ void store_partial(float* partial_C, const float* tb_frag_C, int cta, int slice_id)
    {
        if (slice_id == 0) {
            PRAGMA_UNROLL
            for (int i = 0; i < CTA_N; ++i) {
                partial_C[cta * CTA_N * CTA_M + i * CTA_M + threadIdx.x] = tb_frag_C[i];
            }
        }
    }

    template<int Index>
    __device__ void store_accum(float* tb_frag_C,
                                float* tb_smem_C,
                                half*  C,
                                int    m,
                                int    n,
                                int    cta_m,
                                int    cta_n,
                                int    warp_id_m,
                                int    warp_id_n,
                                int    lane_id,
                                int    slice_id)
    {

        if (slice_id != 0) {
            return;
        }

        // https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#mma-16816-c
        PRAGMA_UNROLL
        for (int i = 0; i < WARP_N / OP_N; ++i) {
            const float2* frag_C = (float2*)&tb_frag_C[i * WARP_M / OP_M * 4];
            const int     nn     = cta_n + warp_id_n * WARP_N + i * OP_N + lane_id / 4;
            PRAGMA_UNROLL
            for (int j = 0; j < WARP_M / OP_M; ++j) {
                PRAGMA_UNROLL
                for (int x = 0; x < 2; ++x) {
                    const int mm = cta_m + warp_id_m * WARP_M + j * OP_M + x * 8 + lane_id % 4 * 2;
                    // convert to half
                    half2 half_C = __float22half2_rn(frag_C[j * 2 + x]);
                    // transpose 8x8 accum tile
300
                    uint trans_C = transpose_m8n8_b16((uint&)half_C, lane_id);
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
                    // store to global memory
                    OutputOps::template apply<Index>(trans_C, mm, nn, C, m, n);
                }
            }
        }
    }

    __device__ void
    sum_slices(float* tb_frag_C, float* tb_smem_C, int warp_id_m, int warp_id_n, int lane_id, int slice_id)
    {

        int offset_m = warp_id_m * WARP_M / OP_M;
        int offset_n = warp_id_n * WARP_N / OP_N;

        PRAGMA_UNROLL
        for (int z = 0; z < SLICES; ++z) {
            if (slice_id == z) {
                PRAGMA_UNROLL
                for (int i = 0; i < WARP_N / OP_N; ++i) {
                    PRAGMA_UNROLL
                    for (int j = 0; j < WARP_M / OP_M; ++j) {
                        PRAGMA_UNROLL
                        for (int x = 0; x < 4; ++x) {
                            int src = (i * WARP_M / OP_M + j) * 4 + x;
                            int dst = ((i + offset_n) * CTA_M / OP_M + j + offset_m) * 4 + x;
                            if (z > 0) {
                                using namespace ops;
                                tb_frag_C[src] = tb_smem_C[dst * WARP_SIZE + lane_id] + tb_frag_C[src];
                            }
                            tb_smem_C[dst * WARP_SIZE + lane_id] = tb_frag_C[src];
                        }
                    }
                }
            }
            __syncthreads();
        }

        if (slice_id == 0) {
            PRAGMA_UNROLL
            for (int i = 0; i < WARP_N / OP_N; ++i) {
                PRAGMA_UNROLL
                for (int j = 0; j < WARP_M / OP_M; ++j) {
                    PRAGMA_UNROLL
                    for (int x = 0; x < 4; ++x) {
                        int src = ((i + offset_n) * CTA_M / OP_M + j + offset_m) * 4 + x;
                        int dst = (i * WARP_M / OP_M + j) * 4 + x;

                        tb_frag_C[dst] = tb_smem_C[src * WARP_SIZE + lane_id];
                    }
                }
            }
        }
    }

    Array<half, 8> warp_frag_A_[2][WARP_M / OP_M];
    Array<half, 4> warp_frag_B_[2][WARP_N / OP_N];

    __device__ void run_v2(half* __restrict__ C,
                           const uint* __restrict__ A,
                           const half* __restrict__ B,
                           const half2* __restrict__ Q,
                           int M,
                           int N,
                           int K,
                           int output_op_idx)
    {
        static_assert(WARP_M % OP_N == 0);

        float tb_frag_C[(WARP_N / OP_N) * (WARP_M / OP_M) * 4];

        extern __shared__ uint8_t smem[];

        const int warp_id = threadIdx.x / WARP_SIZE;
        const int lane_id = threadIdx.x % WARP_SIZE;

        const int warp_id_m  = warp_id % kWarpCountM;
        const int warp_id_nk = warp_id / kWarpCountM;
        const int warp_id_n  = warp_id_nk % kWarpCountN;
        const int warp_id_k  = warp_id_nk / kWarpCountN;

        const int warp_id_mn = warp_id_n * kWarpCountM + warp_id_m;

        const int slice_id = warp_id_k;

        const int cta_k = slice_id * SLICE_K;  // sliced-k offset
        const int cta_m = blockIdx.x * CTA_M;
        const int cta_n = blockIdx.y * CTA_N;

        // each slice has its own partition of smem
        uint4* const tb_smem_A = (uint4*)(smem + IteratorA::kSmemByteSize * slice_id);
        half* const tb_smem_B = (half*)(smem + IteratorA::kSmemByteSize * SLICES + IteratorB::kSmemByteSize * slice_id);

        // [CTA_N / OP_N, CTA_M / OP_M, 4, WARP_SIZE], all mn fragments in CTA
        float* const tb_smem_C = (float*)smem;

        __shared__ typename IteratorQ::Storage tb_smem_Q_storage;

        auto tb_smem_Q = tb_smem_Q_storage.data[slice_id];

        IteratorA iter_A{A, tb_smem_A, M, K, cta_m, cta_k, warp_id_mn, lane_id};
        IteratorQ iter_Q{Q, tb_smem_Q, M, K, cta_m, cta_k, warp_id_mn, lane_id};
        IteratorB iter_B{B, tb_smem_B, K, N, cta_n, cta_k, warp_id_mn, lane_id};

        const int offset_m = warp_id_m * WARP_M + lane_id;

        WarpIterA warp_iter_A(iter_A.smem_, iter_Q.smem_, warp_id, lane_id, offset_m, cta_k);
        WarpIterB warp_iter_B(iter_B.smem_int_ptr_, warp_id_n, lane_id, 0);

        int gemm_iter = (K + CTA_K - 1) / CTA_K;

        PRAGMA_UNROLL
        for (int stage = 0; stage < STAGES - 1; ++stage, --gemm_iter) {
            iter_A.prefetch_stage(gemm_iter > 0);
            iter_Q.prefetch_stage(gemm_iter > 0);
            iter_B.prefetch_stage(gemm_iter > 0);
            __pipeline_commit();
        }

        clear(tb_frag_C);

        __pipeline_wait_prior(STAGES - 2);
        sync_slice(slice_id);

        warp_iter_A.load(warp_frag_A_[0], 0);
        warp_iter_B.load(warp_frag_B_[0], 0);

        PRAGMA_NO_UNROLL
        for (; gemm_iter > -STAGES + 1;) {
            warp_mma(iter_A, iter_Q, iter_B, warp_iter_A, warp_iter_B, tb_frag_C, slice_id, gemm_iter);
        }

        __pipeline_commit();
        __pipeline_wait_prior(0);
        __syncthreads();

        if constexpr (SLICES > 1) {
            sum_slices(tb_frag_C, tb_smem_C, warp_id_m, warp_id_n, lane_id, slice_id);
        }

        switch (output_op_idx) {
            case 0:
                store_accum<0>(tb_frag_C, tb_smem_C, C, M, N, cta_m, cta_n, warp_id_m, warp_id_n, lane_id, slice_id);
                break;
            case 1:
                store_accum<1>(tb_frag_C, tb_smem_C, C, M, N, cta_m, cta_n, warp_id_m, warp_id_n, lane_id, slice_id);
                break;
            default:
                return;
        }
    }
};

template<typename Gemm>
__global__ void gemm_s4_f16_nn(half* __restrict__ C,
                               const uint* __restrict__ A,
                               const half* __restrict__ B,
                               const half2* __restrict__ Q,
                               int M,
                               int N,
                               int K,
                               int output_op_idx)
{
    Gemm{}.run_v2(C, A, B, Q, M, N, K, output_op_idx);
}

}  // namespace turbomind