iterator.h 9.72 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// Copyright (c) OpenMMLab. All rights reserved.

#pragma once

#include "../gemm_s_f16/common.h"
#include "array_ops.h"

namespace turbomind {

#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 4)
#define L2_CACHEHINT(size) ".L2::" #size "B"
#else
#define L2_CACHEHINT(size)
#endif

struct BlockIterator {
17
18
19
20
21
    // const void** ptrs_;
    // const void*  prefetch_;
    void** ptrs_;
    void*  prefetch_;

Li Zhang's avatar
Li Zhang committed
22
23
24

    BlockIterator() = default;

25
    __device__ BlockIterator(/*const */void** block_ptrs): ptrs_{block_ptrs}
Li Zhang's avatar
Li Zhang committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    {
        // prefetch first ptr
        prefetch_ = *ptrs_++;
    }

    __device__ const void* Next()
    {
        // return prefetched ptr
        const void* ret = prefetch_;
        // prefetch next ptr
        prefetch_ = *ptrs_++;

        return ret;
    }
};

template<typename T, typename ThreadMap, int BlockLen, int Stages, bool kUseBlockIter>
struct Iterator {

    using ElementType = T;
    using AccessType  = Array<T, ThreadMap::kAccessC>;

    static constexpr int kElementSize = sizeof(ElementType);
    static constexpr int kAccessSize  = sizeof(AccessType);

    static constexpr int kSizePerTile  = ThreadMap::kS * ThreadMap::kC;
    static constexpr int kSmemByteSize = kElementSize * Stages * kSizePerTile;

    BlockIterator block_iterator_;

    static constexpr int kIterCount = ThreadMap::kIterS * ThreadMap::kIterC;

    static constexpr int kStepC = ThreadMap::kDeltaC;
    static constexpr int kStepS = ThreadMap::kDeltaS * ThreadMap::kC - ThreadMap::kIterC * kStepC;
    static constexpr int kStepK =
        ThreadMap::kS * ThreadMap::kC - ThreadMap::kIterS * ThreadMap::kDeltaS * ThreadMap::kC;

    // (C, S, K) = (64, 384, 1536)

    // initial offset, used to reset src_offset when switching to a new block
    int init_offset_;

    int src_offset_;
    int dst_offset_;

    int iter_c_;
    int iter_b_;

    int  seq_len_;
    int  offset_s_;
    bool is_valid_s_;

    int block_size_;
    int block_k_;
    int layer_offset_;

    int head_idx_;

    const T* __restrict__ src_;
    T* __restrict__ smem_;

    int smem_read_offset_;

    struct __align__(sizeof(AccessType)) SharedStorage
    {
        T smem_[Stages][kSizePerTile];
    };

    Iterator() = default;

    __device__ Iterator(T* src, T* smem, int step, int seq_len, int warp_id, int lane_id)
    {
        src_  = src;
        smem_ = smem;

        int2 init_offset_cs = ThreadMap::get_offset(warp_id, lane_id);

        init_offset_ = init_offset_cs.x + init_offset_cs.y * ThreadMap::kC;

        src_offset_       = init_offset_ + step * ThreadMap::kC;
        dst_offset_       = init_offset_;
        smem_read_offset_ = init_offset_;

        iter_c_ = 0;
        iter_b_ = 0;

        seq_len_    = seq_len;
        offset_s_   = init_offset_cs.y + step;
        is_valid_s_ = offset_s_ < seq_len;
    }

117
118
    // __device__ Iterator(const void** block_ptrs,
    __device__ Iterator(void** block_ptrs,
Li Zhang's avatar
Li Zhang committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
                        int          block_size,
                        int          layer_offset,
                        int          head_idx,
                        T*           smem,
                        int          step,
                        int          seqlen,
                        int          warp_id,
                        int          lane_id)
    {
        // src_  = src;
        int block_index = step / block_size;
        block_size_     = block_size;
        block_k_        = (block_index + 1) * block_size - step;  // offset to next block
        layer_offset_   = layer_offset;
        head_idx_       = head_idx;

        block_iterator_ = BlockIterator(block_ptrs + block_index);

        src_ = (const T*)block_iterator_.Next() + layer_offset_ + head_idx_ * block_size_ * ThreadMap::kC;

        smem_ = smem;

        int2 init_offset_cs = ThreadMap::get_offset(warp_id, lane_id);

        init_offset_ = init_offset_cs.x + init_offset_cs.y * ThreadMap::kC;

        src_offset_       = init_offset_ + (step - block_index * block_size) * ThreadMap::kC;
        dst_offset_       = init_offset_;
        smem_read_offset_ = init_offset_;

        iter_c_ = 0;
        iter_b_ = 0;

        seq_len_    = seqlen;
        offset_s_   = init_offset_cs.y + step;
        is_valid_s_ = offset_s_ < seqlen;
    }

    __device__ void PrefetchStage()
    {
        PRAGMA_UNROLL
        for (int i = 0; i < kIterCount; ++i) {
            Prefetch(is_valid_s_);
            ++(*this);
        }
        AdvancePrefetchStage();
    }

    __device__ void PrefetchBatch(int batch_idx, int batch_size)
    {
        PRAGMA_UNROLL
        for (int i = 0; i < batch_size; ++i) {
            if (batch_idx * batch_size + i < kIterCount) {
                Prefetch(is_valid_s_);
                ++(*this);
            }
        }
    }

    __device__ Iterator& operator++()
    {
        src_offset_ += kStepC;
        dst_offset_ += kStepC;
        ++iter_c_;
        if (iter_c_ < ThreadMap::kIterC) {
            return *this;
        }

        iter_c_ = 0;
        src_offset_ += kStepS;
        dst_offset_ += kStepS;

        offset_s_ += ThreadMap::kDeltaS;
        is_valid_s_ = offset_s_ < seq_len_;

        return *this;
    }

    __device__ void AdvancePrefetchStage()
    {
        src_offset_ += kStepK;
        dst_offset_ += kStepK;

        offset_s_ += ThreadMap::kS - ThreadMap::kIterS * ThreadMap::kDeltaS;

        is_valid_s_ = offset_s_ < seq_len_;

        if constexpr (kUseBlockIter) {
            if (is_valid_s_) {
                block_k_ -= ThreadMap::kS;
                if (block_k_ == 0) {
                    src_ = (const T*)block_iterator_.Next() + layer_offset_ + head_idx_ * block_size_ * ThreadMap::kC;
                    block_k_    = block_size_;
                    src_offset_ = init_offset_;
                }
            }
            // if (blockIdx.x == 0 && threadIdx.x == 0) {
            //     printf("%d %d %d\n", offset_s_, src_offset_ / ThreadMap::kC, block_k_);
            // }
        }

        // if (init_offset_ / ThreadMap::kC == 0) {
        //     int k = dst_offset_ / (ThreadMap::kS * ThreadMap::kC);
        //     int s = dst_offset_ % (ThreadMap::kS * ThreadMap::kC) / ThreadMap::kC;
        //     int c = dst_offset_ % ThreadMap::kC;
        //     printf("tid=%d, k=%d, s=%d, c=%d, offset_s=%d, valid_s=%d, init_s=%d\n",
        //            threadIdx.x,
        //            k,
        //            s,
        //            c,
        //            offset_s_,
        //            (int)is_valid_s_,
        //            init_offset_ / ThreadMap::kC);
        // }

        // if (threadIdx.x == 0 && blockIdx.x == 0) {
        //     printf("next stage %d\n", offset_s_);
        // }

        if (dst_offset_ >= Stages * kSizePerTile) {
            dst_offset_ -= Stages * kSizePerTile;
        }

        // if constexpr (Chained) {
        //     bool is_last_stage = *signal_iterator_;

        //     ++signal_iterator_;

        //     if (is_last_stage) {
        //         AdvancePrefetchSlice();
        //     }
        // }
    }

#if 0
    __device__ void AdvancePrefetchSlice()
    {
        src_        = (const T*)block_iterator_.Next();
        src_offset_ = init_offset_;

        ++iter_b_;
        offset_s_   = iter_b_ / 2 * BlockLen + init_offset_ / ThreadMap::kC;
        is_valid_s_ = offset_s_ < seq_len_;
    }
#endif

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
//     static __device__ void CpAsync(T* __restrict__ dst, const T* __restrict__ src, bool mask)
//     {
//         const int     smem_int_ptr = cast_smem_ptr_to_uint(dst);
//         constexpr int cp_size      = sizeof(AccessType);
//         printf("======iterator.h 265\n");
// #if TURBOMIND_ARCH_SM80
//         // clang-format off
//         asm volatile("{\n"
//                      "  .reg .pred p;\n"
//                      "  setp.ne.b32 p, %0, 0;\n"
//                      "  @p cp.async.ca.shared.global" L2_CACHEHINT(128) " [%1], [%2], %3;\n"
//                      "}\n" ::"r"((int)mask),
//                      "r"(smem_int_ptr),
//                      "l"(src),
//                      "n"(cp_size));
//         // clang-format on
// #else
//         assert(TURBOMIND_ARCH_SM80);
// #endif
//     }
Li Zhang's avatar
Li Zhang committed
285
286
287
288
289
290
291
292
293
294

    static __device__ void Copy(T* __restrict__ dst, const T* __restrict__ src, bool mask)
    {
        if (mask) {
            Ldg(*(AccessType*)dst, src);
        }
    }

    __device__ void Prefetch(bool mask)
    {
295
296
297
298
299
300
        // if constexpr (TURBOMIND_ARCH_SM80) {
        //     CpAsync(smem_ + dst_offset_, src_ + src_offset_, mask);
        // }
        // else {
        Copy(smem_ + dst_offset_, src_ + src_offset_, mask);
        // }
Li Zhang's avatar
Li Zhang committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    }

    __device__ void Load(AccessType (&frag)[ThreadMap::kIterC])
    {

        // if (init_offset_ / ThreadMap::kC == 0) {
        //     int k = smem_read_offset_ / (ThreadMap::kS * ThreadMap::kC);
        //     int s = smem_read_offset_ % (ThreadMap::kS * ThreadMap::kC) / ThreadMap::kC;
        //     int c = smem_read_offset_ % ThreadMap::kC;
        //     printf("tid=%d, k=%d, s=%d, c=%d, init_s=%d\n", threadIdx.x, k, s, c, init_offset_ / ThreadMap::kC);
        // }

        for (int vi = 0; vi < ThreadMap::kIterC; ++vi) {

            // int offset = smem_read_offset_ + vi * ThreadMap::kDeltaC;
            // if (offset >= Stages * kSizePerTile || offset % sizeof(AccessType)) {
            //     int c = offset % ThreadMap::kC;
            //     int s = offset / ThreadMap::kC;
            //     printf("%d %d %d\n", c, s, offset);
            // }

            Lds(frag[vi], smem_ + smem_read_offset_ + vi * ThreadMap::kDeltaC);
        }

        smem_read_offset_ += ThreadMap::kDeltaS * ThreadMap::kC;
    }

    __device__ void AdvanceComputeStage()
    {
        smem_read_offset_ += kStepK;

        if (smem_read_offset_ >= Stages * kSizePerTile) {
            smem_read_offset_ -= Stages * kSizePerTile;
        }
    }
};

}  // namespace turbomind