chatbot.py 18.7 KB
Newer Older
lvhan028's avatar
lvhan028 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright (c) OpenMMLab. All rights reserved.
import json
import logging
import queue
import random
import threading
from dataclasses import dataclass
from enum import Enum
from functools import partial
from typing import List, Union

import google.protobuf.json_format
import mmengine
import numpy as np
import tritonclient.grpc as grpcclient
from tritonclient.grpc.service_pb2 import ModelInferResponse

from llmdeploy.serve.fastertransformer.utils import (Postprocessor,
                                                     Preprocessor,
                                                     prepare_tensor)


@dataclass
class Session:
    session_id: Union[int, str]
    request_id: str = ''
    prev: str = ''  # history of the session in text format
    round_prev: str = ''  # previous generated text in the current round
    sequence_length: int = 0  # the total generated token number in the session
    response: str = ''
    status: int = None  # status of the session


class StatusCode(Enum):
    TRITON_STREAM_END = 0  # end of streaming
    TRITON_STREAM_ING = 1  # response is in streaming
    TRITON_SERVER_ERR = -1  # triton server's error
    TRITON_SESSION_CLOSED = -2  # session has been closed
    TRITON_SESSION_OUT_OF_LIMIT = -3  # request length out of limit
    TRITON_SESSION_INVALID_ARG = -4  # invalid argument


def stream_callback(que, result, error):
    if error:
        print(error)
        que.put(dict(errcode=StatusCode.TRITON_SERVER_ERR, errmsg=f'{error}'))
    else:
        que.put(result.get_response(as_json=True))


def get_logger(log_file=None, log_level=logging.INFO):
    from .utils import get_logger
    logger = get_logger('service.ft', log_file=log_file, log_level=log_level)
    return logger


class Chatbot:
    """Chatbot for LLaMA series models with fastertransformer as inference
    engine.

    Args:
        tritonserver_addr (str): communicating address '<ip>:<port>' of
            triton inference server
        model_name (str): name of the to-be-deployed mode
        session_len (int): the maximum context length of the model
        top_p (float): If set to float < 1, only the smallest set of most
            probable tokens with probabilities that add up to top_p or higher
            are kept for generation.
        top_k (int): The number of the highest probability vocabulary tokens to
            keep for top-k-filtering
        temperature (float): to modulate the next token probability
        repetition_penalty (float): The parameter for repetition penalty.
            1.0 means no penalty
        stop_words (list): List of token ids that stops the generation
        bad_words (list): List of token ids that are not allowed to be
            generated.
        log_level (int): the level of the log
        display (bool): display the generated text on consolo or not
    """

    def __init__(self,
                 tritonserver_addr: str,
                 model_name: str,
                 session_len: int = 2048,
                 top_p: float = 1.0,
                 top_k: int = 40,
                 temperature: float = 1.0,
                 repetition_penalty: float = 1.0,
                 stop_words: List = None,
                 bad_words: List = None,
                 log_level: int = logging.INFO,
                 display: bool = False):
        self._session = None
        self.tritonserver_addr = tritonserver_addr
        self.model_name = model_name
        if stop_words is not None:
            stop_words = np.array(stop_words, dtype=np.int32)
        if bad_words is not None:
            bad_words = np.array(bad_words, dtype=np.int32)

        self.cfg = mmengine.Config(
            dict(session_len=session_len,
                 top_p=top_p,
                 top_k=top_k,
                 temperature=temperature,
                 repetition_penalty=repetition_penalty,
                 stop_words=stop_words,
                 bad_words=bad_words))
        self.preprocess = Preprocessor(tritonserver_addr)
        self.postprocess = Postprocessor(tritonserver_addr)
        self.log_level = log_level
        self.display = display

    def stream_infer(self,
                     session_id: int,
                     prompt: str,
                     request_id: str = '',
                     request_output_len: int = None,
                     sequence_start: bool = False,
                     sequence_end: bool = False,
                     *args,
                     **kwargs):
        """Start a new round conversion of a session.

        Args:
            session_id (int): the identical id of a session
            prompt (str): user's prompt in this round conversation
            request_id (str): the identical id of this round conversation
            request_output_len (int): the expected generated token numbers
            sequence_start (bool): start flag of a session
            sequence_end (bool): end flag of a session
        Returns:
            iterator: The generated content by chatbot
        """
        assert isinstance(session_id, int), \
            f'INT session id is required, but got {type(session_id)}'

        logger = get_logger(log_level=self.log_level)
        logger.info(f'session {session_id}, request_id {request_id}, '
                    f'request_output_len {request_output_len}')

        if self._session is None:
            sequence_start = True
            self._session = Session(session_id=session_id)
        elif self._session.status == 0:
            logger.error(f'session {session_id} has been ended. Please set '
                         f'`sequence_start` be True if you want to restart it')
            yield StatusCode.TRITON_SESSION_CLOSED, '', 0
            return

        self._session.status = 1
        self._session.request_id = request_id
        self._session.response = ''

        prompt = self._get_prompt(prompt, sequence_start)
        for status, res, tokens in self._stream_infer(self._session, prompt,
                                                      request_output_len,
                                                      sequence_start,
                                                      sequence_end):
            yield status, res, tokens
        self._session.prev = self._session.prev + self._session.round_prev

    def end(self, session_id: int, *args, **kwargs):
        """end a session. Triton inference server will release the session's
        occupied resource when it is ended.

        Args:
            session_id (int): the identical id of a session

        Returns:
            int: 0: success, -1: session not found
        """
        assert isinstance(session_id, int), \
            f'INT session id is required, but got {type(session_id)}'

        logger = get_logger(log_level=self.log_level)
        logger.info(f'end session: {session_id}')

        if self._session is None:
            logger.error(
                f"session {session_id} doesn't exist. It cannot be ended")
            return StatusCode.TRITON_SESSION_INVALID_ARG
        if self._session.session_id != session_id:
            logger.error(f'you cannot end session {session_id}, because this '
                         f'session is {self._session.session_id}')
            return StatusCode.TRITON_SESSION_INVALID_ARG
        if self._session.status == 0:
            logger.warning(f'session {session_id} has already been ended')
            return StatusCode.TRITON_SESSION_CLOSED

        self._session.status = 0
        for status, _, _ in self._stream_infer(self._session,
                                               prompt='',
                                               request_output_len=0,
                                               sequence_start=False,
                                               sequence_end=True):
            if status != StatusCode.TRITON_STREAM_END:
                return status
        return StatusCode.TRITON_STREAM_END

    def cancel(self, session_id: int, *args, **kwargs):
        """Cancel the session during generating tokens.

        Args:
            session_id (int): the identical id of a session

        Returns:
            int: 0: success, -1: session not found
        """
        assert isinstance(session_id, int), \
            f'INT session id is required, but got {type(session_id)}'
        logger = get_logger(log_level=self.log_level)
        logger.info(f'cancel session: {session_id}')

        if self._session is None:
            logger.error(
                f"session {session_id} doesn't exist. It cannot be cancelled")
            return StatusCode.TRITON_SESSION_INVALID_ARG
        if self._session.session_id != session_id:
            logger.error(
                f'you cannot cancel session {session_id}, because this '
                f'session is {self._session.session_id}')
            return StatusCode.TRITON_SESSION_INVALID_ARG
        if self._session.status == 0:
            logger.error(f'session {session_id} has already been ended. '
                         f'It cannot be cancelled')
            return StatusCode.TRITON_SESSION_CLOSED

        prev_session = self._session
        for status, res, _ in self._stream_infer(self._session,
                                                 prompt='',
                                                 request_output_len=0,
                                                 sequence_start=False,
                                                 sequence_end=False,
                                                 cancel=True):
            if status.value < 0:
                break
        if status == StatusCode.TRITON_STREAM_END:
            logger.info(f'cancel session {session_id} successfully')
            if prev_session.prev:
                logger.warn(f'TODO: start to recover session {session_id}')
        else:
            logger.info(f'cancel session {session_id} failed: {res}')
        return status

    def _get_prompt(self, prompt: str, sequence_start: bool):
        if self.model_name == 'vicuna':
            if sequence_start:
                return f'USER: {prompt} ASSISTANT:'
            else:
                return f'</s>USER: {prompt} ASSISTANT:'
252
253
        else:
            return prompt
lvhan028's avatar
lvhan028 committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

    def _stream_infer(self,
                      session: Session,
                      prompt: str,
                      request_output_len: int = 512,
                      sequence_start: bool = True,
                      sequence_end: bool = False,
                      cancel: bool = False):
        logger = get_logger(log_level=self.log_level)
        logger.info(f'session {session.session_id}, '
                    f'request id {session.request_id}, '
                    f'request_output_len {request_output_len}, '
                    f'start {sequence_start}, '
                    f'end {sequence_end}, cancel {cancel}')

        assert request_output_len is None or \
               isinstance(request_output_len, int), \
               f'request_output_len is supposed to be None or int, ' \
               f'but got {type(request_output_len)}'

        input_ids, input_lengths = self.preprocess(prompt)
        input_tokens = input_lengths.squeeze()

        if request_output_len is None:
            request_output_len = max(
                128,
                self.cfg.session_len - session.sequence_length - input_tokens)

        if input_tokens + request_output_len + \
                session.sequence_length > self.cfg.session_len:
            errmsg = f'session {session.session_id}, ' \
                     f'out of max sequence length {self.cfg.session_len}, ' \
                     f'#input tokens {input_tokens}, ' \
                     f'history tokens {session.sequence_length}, ' \
                     f'request length {request_output_len}'
            yield StatusCode.TRITON_SESSION_OUT_OF_LIMIT, errmsg, 0
        logger.info(f'session {session.session_id}, '
                    f'input tokens: {input_tokens}, '
                    f'request tokens: {request_output_len}, '
                    f'history tokens: {session.sequence_length}')

        preseq_length = session.sequence_length
        session.round_prev = ''

        que = queue.Queue()
        producer = threading.Thread(target=self._stream_producer,
                                    args=(self.tritonserver_addr, session, que,
                                          self.cfg, input_ids, input_lengths,
                                          request_output_len, sequence_start,
                                          sequence_end, preseq_length, cancel))
        producer.start()
        for state, res, tokens in self.stream_consumer(self.postprocess, que,
                                                       session, preseq_length,
                                                       cancel, logger,
                                                       self.display):
            if state.value < 0:
                yield state, res, 0
            else:
                yield state, res, tokens - input_tokens
        producer.join()
        self._session = que.get()
        curseq_length = self._session.sequence_length
        logger.info(f'session {session.session_id}, pre seq_len '
                    f'{preseq_length}, cur seq_len {curseq_length}, '
                    f'diff {curseq_length - preseq_length}')

    @staticmethod
    def _stream_producer(tritonserver_addr, session, que, cfg, input_ids,
                         input_lengths, request_output_len, sequence_start,
                         sequence_end, preseq_length, cancel):
        request_output_len = np.full(input_lengths.shape,
                                     request_output_len).astype(np.uint32)

        callback = partial(stream_callback, que)
        with grpcclient.InferenceServerClient(tritonserver_addr) as client:
            inputs = [
                prepare_tensor('input_ids', input_ids),
                prepare_tensor('input_lengths', input_lengths),
                prepare_tensor('request_output_len', request_output_len),
                prepare_tensor('runtime_top_k',
                               cfg.top_k * np.ones((1, 1), dtype=np.uint32)),
                prepare_tensor('runtime_top_p',
                               cfg.top_p * np.ones((1, 1), dtype=np.float32)),
                prepare_tensor(
                    'temperature',
                    cfg.temperature * np.ones((1, 1), dtype=np.float32)),
                prepare_tensor(
                    'repetition_penalty',
                    cfg.repetition_penalty * np.ones(
                        (1, 1), dtype=np.float32)),
                prepare_tensor('step',
                               preseq_length * np.ones((1, 1), dtype=np.int32))
            ]
            if cfg.stop_words is not None:
                inputs += [prepare_tensor('stop_words_list', cfg.stop_words)]
            if cfg.bad_words is not None:
                inputs += [prepare_tensor('bad_words_list', cfg.bad_words)]

            inputs += [
                prepare_tensor(
                    'session_len',
                    cfg.session_len *
                    np.ones([input_ids.shape[0], 1], dtype=np.uint32)),
                prepare_tensor('START', (1 if sequence_start else 0) * np.ones(
                    (1, 1), dtype=np.int32)),
                prepare_tensor('END', (1 if sequence_end else 0) * np.ones(
                    (1, 1), dtype=np.int32)),
                prepare_tensor(
                    'CORRID',
                    session.session_id * np.ones((1, 1), dtype=np.uint64)),
                prepare_tensor('STOP', (1 if cancel else 0) * np.ones(
                    (1, 1), dtype=np.int32))
            ]
            if sequence_start:
                random_seed = random.getrandbits(64)
                inputs += [
                    prepare_tensor(
                        'random_seed',
                        random_seed * np.ones((1, 1), dtype=np.uint64))
                ]
            client.start_stream(callback)
            client.async_stream_infer('fastertransformer',
                                      inputs,
                                      sequence_id=session.session_id,
                                      request_id=session.request_id,
                                      sequence_start=sequence_start,
                                      sequence_end=sequence_end)
        que.put(None)

    @staticmethod
    def stream_consumer(postprocess, res_queue, session, preseq_length, cancel,
                        logger, display):

        def process_response(res):
            if session.ai_says is None:
                return res, True
            index = res.find(session.ai_says)
            if index == -1:
                return res, False
            res = res[index + len(session.ai_says):].replace(session.eoa, '')
            return res, True

        while True:
            result = res_queue.get()
            if result is None:
                yield StatusCode.TRITON_STREAM_END, session.response, \
                      session.sequence_length - preseq_length
                break
            if 'errcode' in result:
                logger.error(f'got error from fastertransformer, code '
                             f"{result['errcode']}, {result['errmsg']}, "
                             f'token {session.sequence_length}')
                session.sequence_length = preseq_length
                yield result['errcode'], result['errmsg'], 0
                break
            if cancel:
                continue
            try:
                message = ModelInferResponse()
                google.protobuf.json_format.Parse(json.dumps(result), message)
                result = grpcclient.InferResult(message)
                sequence_length = result.as_numpy('sequence_length')
                output_ids = result.as_numpy('output_ids')

                session.sequence_length = sequence_length.squeeze()
                sequence_length = sequence_length - preseq_length

                output_ids = output_ids.reshape((1, 1, output_ids.shape[-1]))
                sequence_length = sequence_length.reshape(
                    (1, sequence_length.shape[-1]))
                output_str = postprocess(output_ids[:, :, preseq_length:],
                                         sequence_length)
                text = output_str[0].decode()
                if display:
                    new_text = text[len(session.round_prev):]
                    print(new_text, end='', flush=True)
                session.round_prev = text
                yield (StatusCode.TRITON_STREAM_ING, session.response,
                       sequence_length.squeeze())
            except Exception as e:
                logger.error(f'catch exception: {e}')

        # put session back to queue so that `_stream_infer` can update it in
        # `self.sessions`
        while not res_queue.empty():
            res_queue.get()
        res_queue.put(session)
        if display:
            print('\n')