LlamaDecoderSelfAttentionLayer.cc 8.88 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Li Zhang's avatar
Li Zhang committed
18
// Modified from
lvhan028's avatar
lvhan028 committed
19
20
21
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/layers/attention_layers/DecoderSelfAttentionLayer.cc
#include "src/turbomind/models/llama/LlamaDecoderSelfAttentionLayer.h"
#include "src/turbomind/kernels/decoder_masked_multihead_attention.h"
Li Zhang's avatar
Li Zhang committed
22
#include "src/turbomind/kernels/decoder_multihead_attention/decoder_multihead_attention.h"
Chen Xin's avatar
Chen Xin committed
23
#include "src/turbomind/macro.h"
lvhan028's avatar
lvhan028 committed
24
25
26
27
#include "src/turbomind/models/llama/LlamaNcclGuard.h"
#include "src/turbomind/models/llama/llama_kernels.h"
#include "src/turbomind/models/llama/llama_utils.h"
#include "src/turbomind/utils/cuda_utils.h"
28
#include "src/turbomind/utils/logger.h"
lvhan028's avatar
lvhan028 committed
29
#include "src/turbomind/utils/nvtx_utils.h"
Li Zhang's avatar
Li Zhang committed
30
31
32
#include <string>
// #include <glog/logging.h>

lvhan028's avatar
lvhan028 committed
33
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
34
35

template<typename T>
Li Zhang's avatar
Li Zhang committed
36
void LlamaDecoderSelfAttentionLayer<T>::allocateBuffer(size_t batch_size)
Li Zhang's avatar
Li Zhang committed
37
{
lvhan028's avatar
lvhan028 committed
38
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
39
40
41
42
43

    const size_t local_q_kv_head_num = local_head_num_ + 2 * local_kv_head_num_;

    qkv_buf_ = reinterpret_cast<T*>(
        allocator_->reMalloc(qkv_buf_, sizeof(T) * batch_size * local_q_kv_head_num * size_per_head_, false));
Li Zhang's avatar
Li Zhang committed
44
45
46
    context_buf_ =
        reinterpret_cast<T*>(allocator_->reMalloc(context_buf_, sizeof(T) * batch_size * local_hidden_units_, false));

Li Zhang's avatar
Li Zhang committed
47
    workspace_ = (float*)allocator_->reMalloc(
Li Zhang's avatar
Li Zhang committed
48
        workspace_, sizeof(float) * batch_size * local_head_num_ * kMaxSplitK * (size_per_head_ + 2), false);
Li Zhang's avatar
Li Zhang committed
49

Li Zhang's avatar
Li Zhang committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    is_allocate_buffer_ = true;
}

template<typename T>
void LlamaDecoderSelfAttentionLayer<T>::freeBuffer()
{
    if (is_allocate_buffer_) {
        allocator_->free((void**)(&qkv_buf_));
        allocator_->free((void**)(&context_buf_));
        is_allocate_buffer_ = false;
    }
}

template<typename T>
void LlamaDecoderSelfAttentionLayer<T>::forward(TensorMap*                     output_tensors,
                                                const TensorMap*               input_tensors,
                                                const LlamaAttentionWeight<T>* weights)
{
    /**
     * input tensors:
     *    \param input_query [batch_size, hidden_units],
     *    \param sequence_lengths [batch_size]
     *    \param step [1] on cpu
     *    \param finished [batch_size]
     *    \param total_padding_tokens [batch_size]
     *    \param layer_id [1], int on cpu
     *    \param max_seq_len [1] on cpu
     *    \param masked_tokens [batch_size, memory_len], (optional), NOT USED YET
     *    \param cache_indirection [batch_size / beam_width, beam_width, memory_max_len] (optional)
     *
     * output tensors:
     *    \param attention_output [batch_size, hidden_units],
82
     *    \param key_cache [batch, local_head_num, memory_max_len, size_per_head]
Li Zhang's avatar
Li Zhang committed
83
84
85
86
87
     *    \param value_cache [batch, local_head_num, memory_max_len, size_per_head]
     */

    const T*    input_query_data      = input_tensors->getPtr<T>("input_query");
    const int*  sequence_lengths_data = input_tensors->getPtr<int>("sequence_lengths");
Li Zhang's avatar
Li Zhang committed
88
89
90
91
    const bool* finished_data         = input_tensors->getPtr<bool>("finished");

    const int sum_seq_len = input_tensors->getVal<int>("sum_seq_len");
    const int max_seq_len = input_tensors->getVal<int>("max_seq_len");
Li Zhang's avatar
Li Zhang committed
92
93
94
95
96

    T*  hidden_features_data = output_tensors->getPtr<T>("attention_output");
    T** key_cache_ptrs       = output_tensors->getPtr<T*>("key_cache");
    T** value_cache_ptrs     = output_tensors->getPtr<T*>("value_cache");

Li Zhang's avatar
Li Zhang committed
97
    int* cu_block_counts = input_tensors->at("cu_block_counts").getPtr<int>();
Li Zhang's avatar
Li Zhang committed
98

Li Zhang's avatar
Li Zhang committed
99
    const int layer_id = input_tensors->getVal<int>("layer_id");
Li Zhang's avatar
Li Zhang committed
100

Li Zhang's avatar
Li Zhang committed
101
102
    const int step = input_tensors->getVal<int>("step");
    // const int step_1 = step - 1;
Li Zhang's avatar
Li Zhang committed
103
104

    const int batch_size = input_tensors->at("input_query").shape[0];
Li Zhang's avatar
Li Zhang committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

    const float* rope_theta = input_tensors->getPtr<const float>("rope_theta", nullptr);

    allocateBuffer(batch_size);

    // for (int i = 0; i < batch_size; ++i) {
    //     if (gSequenceIds(i) == 1) {
    //         Compare((T*)input_query_data + hidden_units_ * i,
    //                 hidden_units_,
    //                 Concat("query", gSequenceIds(i), seqlens[i], layer_id),
    //                 compare_mode,
    //                 stream_);
    //     }
    // }

    {
        NvtxScope scope("qkv_gemm");
        linear_.forward(qkv_buf_, input_query_data, batch_size, weights->qkv);
    }

    // if (layer_id == 0) {
    //     Compare(qkv_buf_, batch_size * 3 * hidden_units_, Concat("qkv_buf", step, layer_id), kCmpRead, stream_);
    // }

    const auto layer_offset = layer_id * local_kv_head_num_ * kv_cache_block_len_ * size_per_head_;
    // const int  memory_len   = max_seq_len;

    DecoderMultiHeadAttentionParams<T> params{};

    params.out    = context_buf_;
    params.q      = qkv_buf_;
    params.k      = params.q + local_head_num_ * size_per_head_;
    params.v      = params.k + local_kv_head_num_ * size_per_head_;
    params.stride = (local_head_num_ + 2 * local_kv_head_num_) * size_per_head_;

    params.q_bias = weights->qkv.bias;
    params.k_bias = params.q_bias + local_head_num_ * size_per_head_;
    params.v_bias = params.k_bias + local_kv_head_num_ * size_per_head_;

    params.batch_size    = batch_size;
    params.cu_block_cnts = cu_block_counts;

    params.k_cache_block_ptrs  = (void**)key_cache_ptrs;
    params.v_cache_block_ptrs  = (void**)value_cache_ptrs;
    params.kv_cache_block_size = kv_cache_block_len_;

    params.finished          = finished_data;
    params.per_sample_length = sequence_lengths_data;
    params.rope_theta        = rope_theta;

    params.layer_offset = layer_offset;

    params.num_heads     = local_head_num_;
    params.num_kv_heads  = local_kv_head_num_;
    params.size_per_head = size_per_head_;
    params.inv_sqrt_dh   = 1.f / std::sqrt((float)params.size_per_head);

    params.rotary_embedding_dim    = size_per_head_;
    params.rotary_embedding_base   = params_.rotary_embedding_base;
    params.max_position_embeddings = params_.max_position_embeddings;
    // params.use_dynamic_ntk = params_.use_dynamic_ntk;
    params.use_logn_attn = params_.use_logn_attn;

    params.partial_O = workspace_;
    params.partial_M = params.partial_O + batch_size * local_head_num_ * kMaxSplitK * size_per_head_;
    params.partial_L = params.partial_M + batch_size * local_head_num_ * kMaxSplitK;

    // avg_batch_size = sum_seq_len / max_seq_len
    // max_split_k    = kMaxSplitK  / avg_batch_size
    // max_split_k'   = min(max_split_k, max_seq_lens / kSliceLen)

    const float avg_batch_size = max_seq_len ? (float)sum_seq_len / max_seq_len : 1;
    FT_CHECK(avg_batch_size >= 1.f);

    const int max_split_k = std::max(1, (int)std::ceil(kMaxSplitK / avg_batch_size));

    // if (layer_id == 0) {
    //     TM_LOG_INFO("avg_batch_size = %.1f, max_split_k = %d", avg_batch_size, max_split_k);
    // }

    params.max_split_k = max_split_k;
    params.max_seq_len = max_seq_len;

    params.arch   = arch_;
    params.stream = stream_;

    params.quant_policy = quant_policy_;
    std::copy(weights->past_kv_scale.begin(), weights->past_kv_scale.end(), std::begin(params.kv_quant_params));

    {
        NvtxScope scope("decoder_multihead_attention");
        DispatchDecoderMultiheadAttention<T>(params);
    }

    // for (int i = 0; i < batch_size; ++i) {
    //     if (gSequenceIds(i) == 1) {
    //         Compare((T*)context_buf_ + hidden_units_ * i,
    //                 hidden_units_,
    //                 Concat("context_buf", gSequenceIds(i), seqlens[i], layer_id),
    //                 compare_mode,
    //                 stream_);
    //     }
    // }

    // if (layer_id == 0) {
    //     Compare(context_buf_, batch_size * hidden_units_, Concat("context_buf", step, layer_id), kCmpRead, stream_);
    // }

    {
        NvtxScope scope("o_gemm");
        linear_.forward(hidden_features_data, context_buf_, batch_size, weights->output);
    }
Li Zhang's avatar
Li Zhang committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

    if (tensor_para_.world_size_ > 1) {
        NcclGuard nccl_guard(tensor_para_, stream_);
        ftNcclAllReduceSum(
            hidden_features_data, hidden_features_data, batch_size * hidden_units_, tensor_para_, stream_);
        sync_check_cuda_error();
    }

    if (is_free_buffer_after_forward_) {
        freeBuffer();
    }

    // LOG(WARNING);
}

template class LlamaDecoderSelfAttentionLayer<float>;
template class LlamaDecoderSelfAttentionLayer<half>;

lvhan028's avatar
lvhan028 committed
235
}  // namespace turbomind