LlamaContextDecoder.cc 14.3 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Li Zhang's avatar
Li Zhang committed
18
// Modified from
lvhan028's avatar
lvhan028 committed
19
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/models/multi_gpu_gpt/ParallelGptContextDecoder.cc
Li Zhang's avatar
Li Zhang committed
20

lvhan028's avatar
lvhan028 committed
21
22
23
#include "src/turbomind/models/llama/LlamaContextDecoder.h"
#include "src/turbomind/kernels/bert_preprocess_kernels.h"
#include "src/turbomind/kernels/gpt_kernels.h"
Chen Xin's avatar
Chen Xin committed
24
#include "src/turbomind/macro.h"
lvhan028's avatar
lvhan028 committed
25
26
27
#include "src/turbomind/models/llama/LlamaContextDecoder.h"
#include "src/turbomind/models/llama/llama_decoder_kernels.h"
#include "src/turbomind/models/llama/llama_kernels.h"
Li Zhang's avatar
Li Zhang committed
28
#include "src/turbomind/models/llama/llama_utils.h"
lvhan028's avatar
lvhan028 committed
29
#include "src/turbomind/utils/Tensor.h"
Li Zhang's avatar
Li Zhang committed
30
#include "src/turbomind/utils/debug_utils.h"
Li Zhang's avatar
Li Zhang committed
31

lvhan028's avatar
lvhan028 committed
32
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
33
34
35
36
37
38
39
40
41
42

template<typename T>
void LlamaContextDecoder<T>::allocateBuffer()
{
    FT_CHECK(false);
}

template<typename T>
void LlamaContextDecoder<T>::allocateBuffer(size_t batch_size, size_t num_token, size_t max_q_len, size_t max_kv_len)
{
lvhan028's avatar
lvhan028 committed
43
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
44
45
46
47
48
49
50
51
52
53
54

    attention_mask_ = (T*)allocator_->reMalloc(attention_mask_, sizeof(T) * batch_size * max_q_len * max_kv_len, false);
    padding_offset_ = (int*)allocator_->reMalloc(padding_offset_, sizeof(int) * batch_size * max_q_len, false);
    cu_seqlens_     = (int*)allocator_->reMalloc(cu_seqlens_, sizeof(int) * (batch_size + 1), false);

    is_allocate_buffer_ = true;
}

template<typename T>
void LlamaContextDecoder<T>::freeBuffer()
{
lvhan028's avatar
lvhan028 committed
55
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
56
57
58
59
60
61
62
63
64
65
    if (is_allocate_buffer_) {
        allocator_->free((void**)&padding_offset_);
        allocator_->free((void**)&cu_seqlens_);
        allocator_->free((void**)&attention_mask_);
        allocator_->free((void**)&h_pinned_token_num_ptr_, true);
        is_allocate_buffer_ = false;
    }
}

template<typename T>
66
67
68
void LlamaContextDecoder<T>::initialize(const LlamaAttentionParams& attn_params,
                                        size_t                      kv_head_num,
                                        bool                        use_fmha,
Li Zhang's avatar
Li Zhang committed
69
                                        int                         cache_block_seq_len,
70
                                        int                         quant_policy)
Li Zhang's avatar
Li Zhang committed
71
72
73
74
{
    h_pinned_token_num_ptr_ = (size_t*)allocator_->reMalloc(h_pinned_token_num_ptr_, sizeof(size_t), true, true);

    context_attention_layer_ = new LlamaContextAttentionLayer<T>(head_num_,
75
                                                                 kv_head_num,
Li Zhang's avatar
Li Zhang committed
76
                                                                 size_per_head_,
77
                                                                 attn_params,
Li Zhang's avatar
Li Zhang committed
78
79
80
81
82
                                                                 tensor_para_,
                                                                 stream_,
                                                                 cublas_wrapper_,
                                                                 allocator_,
                                                                 is_free_buffer_after_forward_,
83
                                                                 use_fmha,
Li Zhang's avatar
Li Zhang committed
84
                                                                 cache_block_seq_len,
85
                                                                 quant_policy);
Li Zhang's avatar
Li Zhang committed
86
87
88
89
90
91
92
93
94
95
96
97
98

    silu_ffn_layer_ = new LlamaFfnLayer<T>(head_num_,
                                           size_per_head_,
                                           inter_size_,
                                           tensor_para_,
                                           stream_,
                                           cublas_wrapper_,
                                           allocator_,
                                           is_free_buffer_after_forward_);
}

template<typename T>
void LlamaContextDecoder<T>::forwardSelfAttn(const Session&                                 sess,
99
                                             T*                                             attn_io,
Li Zhang's avatar
Li Zhang committed
100
                                             std::unordered_map<std::string, Tensor>*       output_tensors,
Li Zhang's avatar
Li Zhang committed
101
102
103
104
                                             const std::unordered_map<std::string, Tensor>* input_tensors,
                                             int                                            layer,
                                             bool                                           is_final)
{
lvhan028's avatar
lvhan028 committed
105
    // TM_LOG_ERROR(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
106
    TensorMap self_attention_input_tensors{
107
        {"input_query", Tensor{MEMORY_GPU, data_type_, {sess.token_num, hidden_units_}, attn_io}},
Li Zhang's avatar
Li Zhang committed
108
109
110
111
112
113
114
115
        {"attention_mask",
         {MEMORY_GPU, data_type_, {sess.batch_size, 1, sess.max_query_len, sess.max_key_len}, attention_mask_}},
        {"layer_id", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &layer}},
        {"is_final_layer", Tensor{MEMORY_CPU, TYPE_BOOL, {1}, &is_final}},
        {"padding_offset", {MEMORY_GPU, TYPE_INT32, {sess.token_num}, padding_offset_}},
        {"cu_seqlens", {MEMORY_GPU, TYPE_INT32, {sess.batch_size + 1}, cu_seqlens_}},
        {"input_lengths", {MEMORY_GPU, TYPE_INT32, {sess.batch_size}, sess.input_length}},
        {"context_lengths", {MEMORY_GPU, TYPE_INT32, {sess.batch_size}, sess.context_length}},
Li Zhang's avatar
Li Zhang committed
116
117
        {"cu_block_counts", input_tensors->at("cu_block_counts")},
        {"rope_theta", input_tensors->at("rope_theta")},
Li Zhang's avatar
Li Zhang committed
118
119
120
        {"max_seq_len", input_tensors->at("max_seq_len")}};

    TensorMap self_attention_output_tensors{
121
        {"hidden_features", {MEMORY_GPU, data_type_, {sess.token_num, hidden_units_}, attn_io}},
Li Zhang's avatar
Li Zhang committed
122
123
124
125
        {"key_cache", output_tensors->at("key_cache")},
        {"value_cache", output_tensors->at("value_cache")},
        {"tmp_k", output_tensors->at("tmp_k")},
        {"tmp_v", output_tensors->at("tmp_v")}};
Li Zhang's avatar
Li Zhang committed
126
127
128
129
130
131
132

    context_attention_layer_->forward(&self_attention_output_tensors,  //
                                      &self_attention_input_tensors,
                                      &sess.weights->at(layer)->self_attn_weights);
}

template<typename T>
133
134
135
136
137
138
139
140
141
142
143
144
145
LlamaContextDecoder<T>::LlamaContextDecoder(size_t                      head_num,
                                            size_t                      kv_head_num,
                                            size_t                      size_per_head,
                                            size_t                      inter_size,
                                            size_t                      num_layer,
                                            const LlamaAttentionParams& attn_params,
                                            float                       rmsnorm_eps,
                                            NcclParam                   tensor_para,
                                            cudaStream_t                stream,
                                            cublasMMWrapper*            cublas_wrapper,
                                            IAllocator*                 allocator,
                                            bool                        is_free_buffer_after_forward,
                                            bool                        use_fmha,
Li Zhang's avatar
Li Zhang committed
146
                                            int                         cache_block_seq_len,
147
                                            int                         quant_policy):
Li Zhang's avatar
Li Zhang committed
148
149
150
151
152
153
154
155
156
157
    BaseLayer(stream, cublas_wrapper, allocator, is_free_buffer_after_forward),
    head_num_(head_num),
    size_per_head_(size_per_head),
    inter_size_(inter_size),
    hidden_units_(head_num * size_per_head),
    num_layer_(num_layer),
    rmsnorm_eps_(rmsnorm_eps),
    tensor_para_(tensor_para),
    data_type_(getTensorType<T>())
{
Li Zhang's avatar
Li Zhang committed
158
    initialize(attn_params, kv_head_num, use_fmha, cache_block_seq_len, quant_policy);
Li Zhang's avatar
Li Zhang committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
}

template<typename T>
LlamaContextDecoder<T>::~LlamaContextDecoder()
{
    delete context_attention_layer_;
    delete silu_ffn_layer_;
    freeBuffer();
}

template<typename T>
void LlamaContextDecoder<T>::forward(std::vector<Tensor>*                            output_tensors,
                                     const std::vector<Tensor>*                      input_tensors,
                                     const std::vector<LlamaDecoderLayerWeight<T>*>* decoder_layer_weights)
{
    FT_CHECK(false);
}

template<typename T>
void LlamaContextDecoder<T>::forward(std::unordered_map<std::string, Tensor>*        output_tensors,
                                     const std::unordered_map<std::string, Tensor>*  input_tensors,
                                     const std::vector<LlamaDecoderLayerWeight<T>*>* decoder_layer_weights)
{
    /**
     * input tensors:
     *   \param decoder_input [num_token, hidden_units], float
     *   \param input_lengths [batch_size], int
     *   \param history_lengths [batch_size], int
     *   \param context_legnths [batch_size], int
     *   \param output_norm_weight [hidden_dims], float
     *   \param max_q_len [1], int on cpu
     *   \param max_kv_len [1], int on cpu
     *   \param max_seq_len [1], int on cpu
     *
     * output tensors:
194
     *   \param decoder_output [num_token, hidden_units],
Li Zhang's avatar
Li Zhang committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
     *   \param key_cache [num_layer, batch, local_head_num, size_per_head // x, max_seq_len, x]
     *   \param value_cache [num_layer, batch, local_head_num, max_seq_len, size_per_head]
     *   \param last_token_hidden_units [batch_size, hidden_units]
     */

    Session sess{};

    sess.token_num     = input_tensors->at("decoder_input").shape[0];
    sess.batch_size    = input_tensors->at("input_lengths").shape[0];
    sess.max_query_len = input_tensors->at("max_q_len").getVal<int>();
    sess.max_key_len   = input_tensors->at("max_kv_len").getVal<int>();
    sess.weights       = decoder_layer_weights;

    sess.input_length   = input_tensors->at("input_lengths").getPtr<int>();
    sess.context_length = input_tensors->at("context_lengths").getPtr<int>();

    T* decoder_input_output = input_tensors->at("decoder_input").getPtr<T>();
212
    T* decoder_output       = output_tensors->at("decoder_output").getPtr<T>();
Li Zhang's avatar
Li Zhang committed
213
214
215

    allocateBuffer(sess.batch_size, sess.token_num, sess.max_query_len, sess.max_key_len);

Li Zhang's avatar
Li Zhang committed
216
217
218
    // dbg(padding_offset_);
    FT_CHECK(padding_offset_);

Li Zhang's avatar
Li Zhang committed
219
220
221
222
223
224
225
226
227
228
    size_t tmp_token_num{};
    invokeGetPaddingOffsetAndCuSeqLens(h_pinned_token_num_ptr_,
                                       &tmp_token_num,  // updated token num
                                       padding_offset_,
                                       cu_seqlens_,
                                       input_tensors->at("input_lengths").getPtr<int>(),
                                       sess.batch_size,
                                       sess.max_query_len,
                                       stream_);
    sync_check_cuda_error();
Li Zhang's avatar
Li Zhang committed
229
    dbg(tmp_token_num, sess.token_num);
Li Zhang's avatar
Li Zhang committed
230
231
232
233
234
235
236
237
238
239
240
    FT_CHECK(tmp_token_num == sess.token_num);

    invokeCreateCausalMasks(attention_mask_,
                            sess.input_length,
                            sess.context_length,
                            sess.max_query_len,
                            sess.max_key_len,
                            sess.batch_size,
                            stream_);
    sync_check_cuda_error();

Li Zhang's avatar
Li Zhang committed
241
242
243
    // Compare(
    //     decoder_input_output, sess.token_num * hidden_units_, Concat("context_decoder_input", 0), kCmpRead, stream_);

Li Zhang's avatar
Li Zhang committed
244
245
    /////////////////////////////////////////////
    /// RMSNorm
246
    invokeRootMeanSquareNorm(decoder_output,
Li Zhang's avatar
Li Zhang committed
247
248
249
250
251
252
253
254
255
256
257
                             decoder_input_output,
                             decoder_layer_weights->at(0)->self_attn_norm_weights,
                             rmsnorm_eps_,
                             sess.token_num,
                             hidden_units_,
                             stream_);
    sync_check_cuda_error();

    for (size_t layer = 0; layer < num_layer_; ++layer) {
        /////////////////////////////////////////////
        /// self-attention
Li Zhang's avatar
Li Zhang committed
258
        forwardSelfAttn(sess, decoder_output, output_tensors, input_tensors, layer, false);
Li Zhang's avatar
Li Zhang committed
259

Li Zhang's avatar
Li Zhang committed
260
        invokeFusedAddBiasResidualRMSNorm(decoder_input_output,
261
                                          decoder_output,
Li Zhang's avatar
Li Zhang committed
262
263
264
265
266
267
                                          decoder_layer_weights->at(layer)->self_attn_weights.output.bias,
                                          decoder_layer_weights->at(layer)->ffn_norm_weights,
                                          rmsnorm_eps_,
                                          sess.token_num,
                                          hidden_units_,
                                          stream_);
Li Zhang's avatar
Li Zhang committed
268
269
270
271
        sync_check_cuda_error();

        ////////////////////////////////////////////
        /// feed-forward network
272
273
274
        TensorMap ffn_inputs{{"ffn_input", {MEMORY_GPU, data_type_, {sess.token_num, hidden_units_}, decoder_output}}};
        TensorMap ffn_outputs{
            {"ffn_output", {MEMORY_GPU, data_type_, {sess.token_num, hidden_units_}, decoder_output}}};
Li Zhang's avatar
Li Zhang committed
275
276
277
278
        silu_ffn_layer_->forward(&ffn_outputs, &ffn_inputs, &decoder_layer_weights->at(layer)->ffn_weights);

        auto scale_weight = layer < num_layer_ - 1 ? decoder_layer_weights->at(layer + 1)->self_attn_norm_weights :
                                                     input_tensors->at("output_norm_weight").getPtr<T>();
Li Zhang's avatar
Li Zhang committed
279
        invokeFusedAddBiasResidualRMSNorm(decoder_input_output,  //
280
                                          decoder_output,
Li Zhang's avatar
Li Zhang committed
281
282
283
284
285
286
                                          decoder_layer_weights->at(layer)->ffn_weights.output.bias,
                                          scale_weight,
                                          rmsnorm_eps_,
                                          sess.token_num,
                                          hidden_units_,
                                          stream_);
Li Zhang's avatar
Li Zhang committed
287
288
289
290
291
292
293
294
295
296
297
        sync_check_cuda_error();
    }

    if (is_free_buffer_after_forward_) {
        freeBuffer();
    }
}

template class LlamaContextDecoder<float>;
template class LlamaContextDecoder<half>;

lvhan028's avatar
lvhan028 committed
298
}  // namespace turbomind