profile_generation_new.py 16.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import csv
import logging
import os
import time
from dataclasses import dataclass
from queue import Queue
from threading import Thread
from typing import List

import numpy as np
from pynvml import (NVMLError, nvmlDeviceGetCount, nvmlDeviceGetHandleByIndex,
                    nvmlDeviceGetMemoryInfo, nvmlDeviceGetName,
                    nvmlDeviceGetPowerState, nvmlDeviceGetTemperature,
                    nvmlInit, nvmlShutdown, nvmlSystemGetDriverVersion)
from tqdm import tqdm

from lmdeploy.turbomind import TurboMind


def infer(model, session_id: int, input_ids: List, output_seqlen: int,
          top_k: int, top_p: float, temperature: float, test_round: int,
          que: Queue):
    if session_id == 1:
        pbar = tqdm(total=test_round)
    chatbot = model.create_instance()
    stats = []
    for _ in range(test_round):
        token_latency_stats = [0] * (output_seqlen + 1)
        prev = time.perf_counter()
        n_prev_token = 0
        """
        The iterator provided by `stream_infer` denotes the number of generated tokens so far,
        which is represented by the variable `n_token`.
        Please note that `n_token` is not a continuous value. In other words, during the iteration,
        its value might be 5, 7, 8, 16, and so on, rather than 1, 2, 3, 4, etc.
        So, it is quite difficult to get the latency of each generated token.
        As a work-around, we set the latency `now-prev` of each iteration to the first token of
        the new generated tokens, and leave the latency of the rest tokens being 0.
        For example, in the first iteration, 5 tokens are generated.
        The time elapsing in this iteration `now-prev` is set to the latency of first token of
        the 5 tokens, i.e. `token_latency_stats[0]`, and `token_latency_stats[1:4]` is set 0`
        """   # noqa: E501
        for outputs in chatbot.stream_infer(session_id,
                                            input_ids,
                                            request_output_len=output_seqlen,
                                            sequence_start=True,
                                            sequence_end=True,
                                            ignore_eos=True,
                                            stream_output=True,
                                            top_k=top_k,
                                            top_p=top_p,
                                            temperature=temperature):
            _, n_token = outputs[0]
            now = time.perf_counter()
            if n_prev_token != n_token:
                token_latency_stats[n_prev_token] = np.round(now - prev, 3)
                n_prev_token = n_token
            prev = now
        if session_id == 1:
            pbar.update(1)

        assert output_seqlen <= n_token <= output_seqlen + 1, \
            f'Error. session_id({session_id}) request {output_seqlen} ' \
            f'tokens, but generate {n_token} tokens'
        stats.append(token_latency_stats[:output_seqlen])
    que.put((session_id, stats))


def warmup(model, concurrency: int, input_ids: List[int], output_seqlen: int,
           warmup_round: int):
    if not warmup_round:
        return

    print('start to warmup ...')

    def _infer(model, session_id):
        chatbot = model.create_instance()
        for _ in range(warmup_round):
            for _ in chatbot.stream_infer(session_id,
                                          input_ids=input_ids,
                                          request_output_len=output_seqlen,
                                          sequence_start=True,
                                          sequence_end=True,
                                          ignore_eos=True,
                                          top_k=1,
                                          top_p=1.0,
                                          temperature=1.0):
                continue

    _start = time.perf_counter()
    procs = []
    for i in range(concurrency):
        proc = Thread(target=_infer, args=(model, i + 1))
        procs.append(proc)
        proc.start()

    for proc in procs:
        proc.join()

    _end = time.perf_counter()
    print(f'end warmup, elapsed time: {round(_end - _start, 2)}s')


def profile_throughput(model_path: str, concurrency: int, input_seqlen: int,
                       output_seqlen: int, tp: int, top_k: int, top_p: float,
                       temperature: float, test_round: int, warmup_round: int,
                       **kwargs):

    print(f'profiling ... concurrency: {concurrency}, '
          f'n_prompt_token: {input_seqlen}, '
          f'n_completion_token: {output_seqlen}, '
          f'test_round: {test_round}, warmup_round: {warmup_round}')

    # avoid turbomind checking chat template name by setting `model_name='llama'` # noqa
    tm_model = TurboMind(model_path=model_path, tp=tp)

    # make up a dummy `input_ids` with the length of `input_seqlen` exactly
    assert input_seqlen > 0, 'input_seqlen should > 0'
    input_ids = np.random.randint(low=0, high=101, size=input_seqlen).tolist()
    warmup(tm_model, concurrency, input_ids, output_seqlen, warmup_round)

    que = Queue()
    procs = []
    _start = time.perf_counter()

    for i in range(concurrency):
        proc = Thread(target=infer,
                      args=(tm_model, i + 1, input_ids, output_seqlen, top_k,
                            top_p, temperature, test_round, que))
        procs.append(proc)
        proc.start()

    for proc in procs:
        proc.join()

    _end = time.perf_counter()
    elapsed_time = _end - _start

    token_latency_stats = []
    while not que.empty():
        _, _stats = que.get()
        token_latency_stats += _stats

    # The shape is [concurrency*test_round, output_seqlen]
    token_latency_stats = np.stack(token_latency_stats, axis=0)

    first_token_latency_min = np.round(
        np.min(token_latency_stats[:, 0], axis=0), 3)
    first_token_latency_max = np.round(
        np.max(token_latency_stats[:, 0], axis=0), 3)
    first_token_latency_ave = np.round(
        np.mean(token_latency_stats[:, 0], axis=0), 3)
    token_latency_max = np.round(np.max(np.sum(token_latency_stats, axis=1)),
                                 3)
    token_latency_min = np.round(np.min(np.sum(token_latency_stats, axis=1)),
                                 3)
    token_latency_ave = np.round(np.mean(np.sum(token_latency_stats, axis=1)),
                                 3)
    # sort token_latency without the first token's latency
    sorted_token_latency = np.sort(token_latency_stats[:, 1:].flatten())
    percentiles = [
        np.round(
            sorted_token_latency[int(percent * len(sorted_token_latency))], 3)
        for percent in [0.5, 0.75, 0.95, 0.99]
    ]

    throughput = np.round(token_latency_stats.size / elapsed_time, 2)
    all_throughput = np.round((token_latency_stats.size + concurrency*input_seqlen) / elapsed_time, 2)
    print(f'\n{"-" * 50}\ntotal time: {elapsed_time:.2f}s\n'
          f'concurrency: {concurrency}, test_round: {test_round}\n'
          f'input_tokens: {input_seqlen}, output_tokens: {output_seqlen}\n'
          f'first_token latency(min, max, ave): '
          f'{first_token_latency_min}s, {first_token_latency_max}s, '
          f'{first_token_latency_ave}s\ntotal_token latency(min, max, ave): '
          f'{token_latency_min}s, {token_latency_max}s, '
          f'{token_latency_ave}s\n'
          f'token_latency percentiles(50%,75%,95%,99%)(s): {percentiles}\n'
          f'all_throughput: {all_throughput} token/s\n'
          f'throughput: {throughput} token/s\n{"-" * 50}')
    return tm_model.model_name, \
        [first_token_latency_min, first_token_latency_max,
         first_token_latency_ave], \
        percentiles, throughput, tm_model.gpu_count


class MemoryMonitor:
    from multiprocessing import Manager
    max_mem = Manager().Value('f', 0)  # GB
    device_count = Manager().Value('f', 0)

    @staticmethod
    def nvidia_info():
        # pip install nvidia-ml-py
        nvidia_dict = {
            'state': True,
            'nvidia_version': '',
            'nvidia_count': 0,
            'gpus': []
        }
        try:
            nvmlInit()
            nvidia_dict['nvidia_version'] = nvmlSystemGetDriverVersion()
            nvidia_dict['nvidia_count'] = nvmlDeviceGetCount()
            for i in range(nvidia_dict['nvidia_count']):
                handle = nvmlDeviceGetHandleByIndex(i)
                memory_info = nvmlDeviceGetMemoryInfo(handle)
                gpu = {
                    'gpu_name': nvmlDeviceGetName(handle),
                    'total': memory_info.total,
                    'free': memory_info.free,
                    'used': memory_info.used,
                    'temperature': f'{nvmlDeviceGetTemperature(handle, 0)}℃',
                    'powerStatus': nvmlDeviceGetPowerState(handle)
                }
                nvidia_dict['gpus'].append(gpu)
        except NVMLError as _:  # noqa
            nvidia_dict['state'] = False
        except Exception as _:  # noqa
            nvidia_dict['state'] = False
        finally:
            try:
                nvmlShutdown()
            except:  # noqa
                pass
        return nvidia_dict

    @classmethod
    def mem_monitor(cls):
        info = cls.nvidia_info()
        max_mem = 0
        mem_start = 0
        cls.device_count.value = len(info['gpus'])
        for used_total in info['gpus']:
            mem_start += used_total['used']
        while True:
            info = cls.nvidia_info()
            used = 0
            for used_total in info['gpus']:
                used += used_total['used']
            if used > max_mem:
                max_mem = used
                cls.max_mem.value = (max_mem - mem_start) / (1 << 30)

    @classmethod
    def start(cls):
        cls._running = True
        from multiprocessing import Process
        cls.proc = Process(target=cls.mem_monitor)
        cls.proc.start()

    @classmethod
    def terminate(cls) -> float:
        """Terminate the subprocess and return maximum memory."""
        cls.proc.kill()
        return cls.max_mem.value


@dataclass
class ProfileResult:
    model_name: str
    batch: int
    prompt_tokens: int
    completion_tokens: int
    first_token_latency: List
    percentiles: List
    throughput_per_proc: float
    throughput_per_node: float
    mem_per_proc: float
    mem_per_gpu: float
    mem_per_node: float


def parse_args():
    parser = argparse.ArgumentParser(description='Regression Test')
    parser.add_argument('--model-path',
                        type=str,
                        help='benchmark test model path')
    parser.add_argument('--concurrency',
                        nargs='+',
                        type=int,
                        help='how many requests launched concurrently',
                        default=[1, 16, 32, 64])
    parser.add_argument(
        '--prompt-tokens',
        nargs='+',
        type=int,
        help='how many requests launched concurrently. One-to-one'
        'correspondence with completion-tokens',
        default=[1, 128, 128, 2048, 2048])
    parser.add_argument('--completion-tokens',
                        nargs='+',
                        type=int,
                        help='how many tokens to be generated. One-to-one'
                        'correspondence with prompt-tokens',
                        default=[128, 128, 2048, 128, 2048])
    parser.add_argument('--tp', type=int, help='Tensor parallel', default=1)
    parser.add_argument('--top_k',
                        type=int,
                        help='The number of highest probability vocabulary '
                        'tokens to keep for top-k-filtering',
                        default=1)
    parser.add_argument('--top_p',
                        type=float,
                        help='the set of most probable tokens with '
                        'probabilities that add up to top_p or higher '
                        'are kept for generation',
                        default=1.0)
    parser.add_argument('--temperature',
                        type=float,
                        help='The value used to modulate the next token '
                        'probabilities',
                        default=1.0)
    parser.add_argument('--csv',
                        type=str,
                        help='Where to save the result.',
                        default='profile_generation.csv')
    parser.add_argument('--log-level',
                        help='set log level',
                        default='ERROR',
                        choices=list(logging._nameToLevel.keys()))
    parser.add_argument('--test-round',
                        type=int,
                        help='number of test rounds',
                        default=6)
    parser.add_argument('--warmup-round',
                        type=int,
                        help='number of warmuop rounds',
                        default=1)
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    assert len(args.prompt_tokens) == len(args.completion_tokens), \
        f'mismatched size between `prompt-tokens` and `completion-tokenes`' \
        f', {len(args.prompt_tokens)} vs {len(args.completion_tokens)}'

    os.environ['TM_LOG_LEVEL'] = args.log_level
    results: List[ProfileResult] = []
    for batch in args.concurrency:
        for prompt_tokens, completion_tokens in zip(args.prompt_tokens,
                                                    args.completion_tokens):
            MemoryMonitor.start()
            from functools import partial
            from multiprocessing import Pool
            profile_target = partial(profile_throughput,
                                     concurrency=batch,
                                     input_seqlen=prompt_tokens,
                                     output_seqlen=completion_tokens,
                                     tp=args.tp,
                                     top_k=args.top_k,
                                     top_p=args.top_p,
                                     temperature=args.temperature,
                                     test_round=args.test_round,
                                     warmup_round=args.warmup_round)
            output = Pool(1).map(profile_target, (args.model_path, ))
            model_name, first_token_latency, percentiles, \
                throughput_per_proc, tp = output[0]
            time.sleep(5)  # wait a while for releasing GPU mem
            memory = MemoryMonitor.terminate()
            device_count = MemoryMonitor.device_count.value
            results.append(
                ProfileResult(model_name=model_name,
                              batch=batch,
                              prompt_tokens=prompt_tokens,
                              completion_tokens=completion_tokens,
                              first_token_latency=first_token_latency,
                              percentiles=percentiles,
                              throughput_per_proc=throughput_per_proc,
                              throughput_per_node=throughput_per_proc / tp *
                              device_count,
                              mem_per_proc=memory,
                              mem_per_gpu=memory / tp,
                              mem_per_node=memory / tp * device_count))
    if args.csv:
        with open(args.csv, 'w') as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow([
                'batch',
                'prompt_tokens',
                'completion_tokens',
                'throughput(out tok/s)',
                'mem(GB)',
                'FTL(ave)(s)',
                'FTL(min)(s)',
                'FTL(max)(s)',
                '50%(s)',
                '75%(s)',
                '95%(s)',
                '99%(s)',
            ])
            for re in results:
                writer.writerow([
                    re.batch, re.prompt_tokens, re.completion_tokens,
                    f'{re.throughput_per_proc:.2f}', f'{re.mem_per_gpu:.2f}',
                    re.first_token_latency[2], re.first_token_latency[0],
                    re.first_token_latency[1], re.percentiles[0],
                    re.percentiles[1], re.percentiles[2], re.percentiles[3]
                ])


if __name__ == '__main__':
    main()