"vscode:/vscode.git/clone" did not exist on "e70a318ae91303170456b62e6aa36b428efc5553"
LlamaDecoderLayerWeight.cc 6.52 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Li Zhang's avatar
Li Zhang committed
18
19
// Modified from
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/models/multi_gpu_gpt/ParallelGptDecoderLayerWeight.cc
Li Zhang's avatar
Li Zhang committed
20
21
22
23
24
25
26
27

#include "src/fastertransformer/models/llama/LlamaDecoderLayerWeight.h"
#include "src/fastertransformer/utils/logger.h"
#include "src/fastertransformer/utils/memory_utils.h"

namespace fastertransformer {

template<typename T>
Li Zhang's avatar
Li Zhang committed
28
29
30
31
32
33
LlamaDecoderLayerWeight<T>::LlamaDecoderLayerWeight(size_t     hidden_units,
                                                    size_t     inter_size,
                                                    WeightType weight_type,
                                                    bool       attn_bias,
                                                    size_t     tensor_para_size,
                                                    size_t     tensor_para_rank):
Li Zhang's avatar
Li Zhang committed
34
35
36
    hidden_units_(hidden_units),
    inter_size_(inter_size),
    weight_type_(weight_type),
Li Zhang's avatar
Li Zhang committed
37
    attn_bias_(attn_bias),
Li Zhang's avatar
Li Zhang committed
38
39
40
    tensor_para_size_(tensor_para_size),
    tensor_para_rank_(tensor_para_rank)
{
Li Zhang's avatar
Li Zhang committed
41
42
43
    self_attn_weights.qkv.input_dims  = hidden_units_;
    self_attn_weights.qkv.output_dims = 3 * hidden_units_ / tensor_para_size_;
    self_attn_weights.qkv.type        = weight_type;
Li Zhang's avatar
Li Zhang committed
44
45
46
47
48

    self_attn_weights.output.input_dims  = hidden_units_ / tensor_para_size_;
    self_attn_weights.output.output_dims = hidden_units_;
    self_attn_weights.output.type        = weight_type;

Li Zhang's avatar
Li Zhang committed
49
50
51
    ffn_weights.gating.input_dims  = hidden_units_;
    ffn_weights.gating.output_dims = inter_size_ / tensor_para_size_;
    ffn_weights.gating.type        = weight_type;
Li Zhang's avatar
Li Zhang committed
52
53
54
55

    ffn_weights.intermediate.input_dims  = hidden_units_;
    ffn_weights.intermediate.output_dims = inter_size_ / tensor_para_size_;
    ffn_weights.intermediate.type        = weight_type;
Li Zhang's avatar
Li Zhang committed
56
57
58
59

    ffn_weights.output.input_dims  = inter_size_ / tensor_para_size_;
    ffn_weights.output.output_dims = hidden_units_;
    ffn_weights.output.type        = weight_type;
Li Zhang's avatar
Li Zhang committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    mallocWeights();
}

template<typename T>
void freeWeights(LlamaDenseWeight<T>& weights)
{
    cudaFree(weights.kernel);
    cudaFree(weights.bias);
    cudaFree(weights.scales);
    cudaFree(weights.zeros);

    weights.kernel = nullptr;
    weights.bias   = nullptr;
    weights.scales = nullptr;
    weights.zeros  = nullptr;
}

template<typename T>
void mallocWeights(LlamaDenseWeight<T>& weights, bool bias)
{
    if (bias) {
        deviceMalloc((T**)&weights.bias, weights.output_dims);
    }
    const size_t bit_size = getBitSize(weights.type);
    if (bit_size >= 16) {  // fp16, fp32
        deviceMalloc((T**)&weights.kernel, weights.input_dims * weights.output_dims);
    }
    else {  // int8, int4
        const int factor = sizeof(float) * 8 / bit_size;
        FT_CHECK(weights.input_dims % factor == 0);
        deviceMalloc((float**)&weights.kernel, weights.input_dims / factor * weights.output_dims);
        deviceMalloc((T**)&weights.scales, weights.output_dims);
        deviceMalloc((T**)&weights.zeros, weights.output_dims);
    }
}

template<typename T>
void loadWeights(LlamaDenseWeight<T>& w, std::string prefix, int rank, FtCudaDataType model_file_type)
{
    prefix += "." + std::to_string(rank);
    const auto type = model_file_type;

    if (w.bias) {
        loadWeightFromBin((T*)w.bias, {w.output_dims}, prefix + ".bias", type);
    }
    const size_t bit_size = getBitSize(w.type);
    if (bit_size >= 16) {  // fp16, fp32
        loadWeightFromBin((T*)w.kernel, {w.input_dims, w.output_dims}, prefix + ".weight", type);
    }
    else {  // int8, int4
        const int factor = sizeof(float) * 8 / bit_size;
        FT_CHECK(w.input_dims % factor == 0);
        const auto f32_type = FtCudaDataType::FP32;
        loadWeightFromBin((float*)w.kernel, {w.input_dims / factor, w.output_dims}, prefix + ".qweight", f32_type);
        loadWeightFromBin((T*)w.scales, {w.output_dims}, prefix + ".scales", type);
        loadWeightFromBin((T*)w.zeros, {w.output_dims}, prefix + ".zeros", type);
    }
}

template<typename T>
void LlamaDecoderLayerWeight<T>::mallocWeights()
{
    deviceMalloc((T**)&self_attn_norm_weights, hidden_units_);
    deviceMalloc((T**)&ffn_norm_weights, hidden_units_);

Li Zhang's avatar
Li Zhang committed
125
126
    fastertransformer::mallocWeights(self_attn_weights.qkv, attn_bias_);
    fastertransformer::mallocWeights(self_attn_weights.output, attn_bias_);
Li Zhang's avatar
Li Zhang committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

    fastertransformer::mallocWeights(ffn_weights.gating, false);
    fastertransformer::mallocWeights(ffn_weights.intermediate, false);
    fastertransformer::mallocWeights(ffn_weights.output, false);
}

template<typename T>
LlamaDecoderLayerWeight<T>::~LlamaDecoderLayerWeight()
{
    cudaFree((void*)self_attn_norm_weights);
    cudaFree((void*)ffn_norm_weights);

    freeWeights(self_attn_weights.qkv);
    freeWeights(self_attn_weights.output);
    freeWeights(ffn_weights.gating);
    freeWeights(ffn_weights.intermediate);
    freeWeights(ffn_weights.output);
}

template<typename T>
void LlamaDecoderLayerWeight<T>::loadModel(std::string dir_path, FtCudaDataType model_file_type)
{
    const auto rank_spec = std::to_string(tensor_para_rank_);
    const auto type      = model_file_type;

    loadWeightFromBin(
        (T*)self_attn_norm_weights, {hidden_units_}, dir_path + ".attention_norm.weight", model_file_type);
    loadWeightFromBin((T*)ffn_norm_weights, {hidden_units_}, dir_path + ".ffn_norm.weight", model_file_type);

    loadWeights(self_attn_weights.qkv, dir_path + ".attention.w_qkv", tensor_para_rank_, type);
    loadWeights(self_attn_weights.output, dir_path + ".attention.wo", tensor_para_rank_, type);
    loadWeights(ffn_weights.gating, dir_path + ".feed_forward.w1", tensor_para_rank_, type);
    loadWeights(ffn_weights.intermediate, dir_path + ".feed_forward.w3", tensor_para_rank_, type);
    loadWeights(ffn_weights.output, dir_path + ".feed_forward.w2", tensor_para_rank_, type);
}

template struct LlamaDecoderLayerWeight<float>;
template struct LlamaDecoderLayerWeight<half>;

}  // namespace fastertransformer