deploy.py 16.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright (c) OpenMMLab. All rights reserved.
import configparser
import json
import os
import os.path as osp
import re
import shutil
from pathlib import Path

import fire
import safetensors
import torch
from sentencepiece import SentencePieceProcessor

supported_formats = ['llama', 'hf']


def create_workspace(_path: str):
    try:
        if osp.exists(_path):
            shutil.rmtree(_path)
        os.makedirs(_path)
        print(f'create workspace in directory {_path}')
        return True
    except Exception as e:
        print(f'create workspace in {_path} failed: {e}')
        return False


def destroy_workspace(_path: str):
    try:
        shutil.rmtree(_path)
        print(f'destroy workspace in directory {_path}')
        return True
    except Exception as e:
        print(f'create workspace in {_path} failed: {e}')
        return False


def copy_triton_model_templates(_path: str):
    try:
        cur_path = osp.abspath(__file__)
        dir_path = osp.dirname(cur_path)
        triton_models_path = osp.join(dir_path, 'triton_models')
        dst_path = osp.join(_path, 'triton_models')
        shutil.copytree(triton_models_path, dst_path, symlinks=True)
        print(f'copy triton model templates from "{triton_models_path}" to '
              f'"{dst_path}" successfully')
        shutil.copy(osp.join(dir_path, 'service_docker_up.sh'), _path)
        return dst_path
    except Exception as e:
        print(f'copy triton model templates from "{triton_models_path}"'
              f' to "{dst_path}" failed: {e}')
        return None


def tokenizer_info(model_path: str):
    assert os.path.isfile(model_path), model_path
    sp_model = SentencePieceProcessor(model_file=model_path)
    # BOS / EOS token IDs
    n_words = sp_model.vocab_size()
    bos_id = sp_model.bos_id()
    eos_id = sp_model.eos_id()
    return n_words, bos_id, eos_id


def export(model_name: str,
           num_layer: int,
           norm_eps: float,
           model_params: dict,
           tokenizer_path: str,
           out_dir: str,
           tp: int,
           size_per_head: int = 128):
    out_dir = osp.join(out_dir, 'weights')
    os.makedirs(out_dir, exist_ok=True)

    def save_bin(param: torch.Tensor, name):
        print(name, param.shape)
        if param.dtype in [torch.float, torch.bfloat16]:
            param = param.half()
        param.contiguous().numpy().tofile(osp.join(out_dir, name))

Li Zhang's avatar
Li Zhang committed
84
85
    attn_bias = False

86
87
88
89
90
91
92
    # reverse the splitting axes since the weights are transposed above
    for param_name, param_data in model_params.items():
        if param_name == 'tok_embeddings.weight':
            _vocab_size, dim = param_data.shape
            head_num = dim // size_per_head
        split_dim = None
        key, ext = param_name.split('.')[-2:]
Li Zhang's avatar
Li Zhang committed
93
94
        if key == 'w_qkv' and ext == 'bias':
            attn_bias = True
95
96
        copy = False
        if key in ['w1', 'w3', 'w_qkv']:
Li Zhang's avatar
Li Zhang committed
97
98
99
100
101
102
            if ext in ['bias']:
                copy = True
            else:
                split_dim = -1
                if key == 'w1':
                    inter_size = param_data.shape[-1]
103
        elif key in ['w2', 'wo']:
Li Zhang's avatar
Li Zhang committed
104
            if ext in ['scales', 'zeros', 'bias']:
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
                copy = True
            else:
                split_dim = 0
        if split_dim is not None:
            print(f'*** splitting {param_name}, shape={param_data.shape}, '
                  f'split_dim={split_dim}')
            assert param_data.shape[split_dim] % tp == 0
            split_size = param_data.shape[split_dim] // tp
            splits = torch.split(param_data, split_size, dim=split_dim)
            for i, split in enumerate(splits):
                prefix, ext = osp.splitext(param_name)
                save_bin(split, f'{prefix}.{i}{ext}')
        elif copy:
            print(f'### copying {param_name}, shape={param_data.shape}')
            copies = [param_data] * tp
            for i, copy in enumerate(copies):
                prefix, ext = osp.splitext(param_name)
                save_bin(copy, f'{prefix}.{i}{ext}')
        else:
            save_bin(param_data, param_name)

    # export config and save it to {out_dir}/config.ini
    vocab_size, bos_id, eos_id = tokenizer_info(tokenizer_path)
    assert _vocab_size == vocab_size, \
        f'different vocab size {_vocab_size} vs {vocab_size}'
    cfg = dict(llama=dict(
        model_name=model_name,
        head_num=head_num,
        size_per_head=size_per_head,
        vocab_size=vocab_size,
        num_layer=num_layer,
        rotary_embedding=size_per_head,
        inter_size=inter_size,
        norm_eps=norm_eps,
Li Zhang's avatar
Li Zhang committed
139
        attn_bias=attn_bias,
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        start_id=bos_id,
        end_id=eos_id,
        weight_type='fp16',
        # parameters for fastertransformer
        max_batch_size=32,
        max_context_token_num=4,
        session_len=2048,
        step_length=1,
        cache_max_entry_count=48,
        cache_chunk_size=8,
        use_context_fmha=1))

    config = configparser.ConfigParser()
    for section, key_values in cfg.items():
        config[section] = key_values

    config_path = osp.join(out_dir, 'config.ini')
    with open(config_path, 'w') as f:
        config.write(f)
    return True


def deploy_llama(model_name: str, model_path: str, tokenizer_path: str,
                 triton_models_path: str, tp: int):
    if osp.exists(tokenizer_path):
        shutil.copy(tokenizer_path,
                    osp.join(triton_models_path, 'tokenizer/tokenizer.model'))
    else:
        print('tokenizer model {tokenizer_path} does not exist')
        return False
    # read model arguments from params.json
    try:
        params_path = osp.join(model_path, 'params.json')
        with open(params_path) as f:
            model_arg = json.load(f)
            num_layer = model_arg['n_layers']
            norm_eps = model_arg['norm_eps']
    except Exception as e:
        print(f'get "n_layers" and "norm_eps" from {params_path} failed: {e}')
        return False

    # convert weights from llama to fastertransformer
    checkpoints = []
    for pattern in ['*.pth', '*.pt']:
        checkpoints += sorted(Path(model_path).glob(pattern))
    print(checkpoints)
    n_ckpt = len(checkpoints)
    model_params = {}

    def get_param(_name, _size):
        print(_name, _size)
        if _name not in model_params:
            model_params[_name] = torch.zeros(_size,
                                              dtype=torch.float16,
                                              device='cpu')
        return model_params[_name]

    for i, ckpt_path in enumerate(checkpoints):
        ckpt = torch.load(ckpt_path, map_location='cpu')
        for param_name, param_data in ckpt.items():
Li Zhang's avatar
Li Zhang committed
200
            key, ext = param_name.split('.')[-2:]
201
202
203
            # column-parallel
            if key in ['w1', 'w3', 'wq', 'wk', 'wv', 'output']:
                size = param_data.size(0)
Li Zhang's avatar
Li Zhang committed
204
205
206
207
208
209
210
                if ext == 'weight':
                    param = get_param(
                        param_name, [size * n_ckpt, param_data.size(1)])
                    param.data[size * i:size * (i + 1), :] = param_data
                else:  # bias
                    param = get_param(param_name, [size * n_ckpt])
                    param.data[size * i:size * (i + 1)] = param_data
211
212
213
            # row-parallel
            elif key in ['w2', 'wo', 'tok_embeddings']:
                size = param_data.size(-1)
Li Zhang's avatar
Li Zhang committed
214
215
216
217
218
219
220
221
                if ext == 'weight':
                    param = get_param(param_name,
                                      [param_data.size(0), size * n_ckpt])
                    param.data[:, size * i:size * (i + 1)] = param_data
                else:  # bias
                    param = get_param(param_name, [size])
                    param.data = param_data

222
223
224
225
226
227
228
229
230
231
232
233
234
            elif i == 0:
                param = get_param(param_name, param_data.size())
                param.data = param_data
        del ckpt

    for name, param in model_params.items():
        # transpose all weights as FasterTransformer is expecting column-major
        # weights: (output_dims, input_dims) -> (input_dims, output_dims)
        key = name.split('.')[-2]
        if key in ['w1', 'w3', 'wq', 'wk', 'wv', 'w2', 'wo']:
            param.data = param.data.t()

    # concat qkv projection
Li Zhang's avatar
Li Zhang committed
235
236
237
238
239
240
241
242
243
244
245
246
    for t in ['weight', 'bias']:
        for i in range(1000):
            _qkv = [f'layers.{i}.attention.{k}.{t}' for k in [
                'wq', 'wk', 'wv']]
            try:
                qkv = tuple(map(model_params.pop, _qkv))
            except KeyError:
                break
            # concat by output_dims
            qkv = torch.stack(qkv, dim=qkv[0].dim() - 1)
            print(f'layers.{i}.attention.w_qkv.{t}', qkv.shape)
            model_params[f'layers.{i}.attention.w_qkv.{t}'] = qkv
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

    assert num_layer == i, f'miss matched layers: {num_layer} vs {i}'

    return export(model_name, num_layer, norm_eps, model_params,
                  tokenizer_path, triton_models_path, tp)


def permute(x: torch.Tensor):
    SIZE_PER_HEAD = 128
    if x.shape[-1] > 1:  # qweights
        dim = x.shape[-1]
        n_heads = dim // SIZE_PER_HEAD
        return x.view(-1, n_heads, 2,
                      dim // n_heads // 2).transpose(2, 3).reshape(-1, dim)
    else:  # scales, zeros
        dim = x.shape[0]
        n_heads = dim // SIZE_PER_HEAD
        return x.view(n_heads, 2, dim // n_heads // 2,
                      1).transpose(1, 2).reshape(dim, 1)


def check_zero(x: torch.Tensor):
    _sum = x.flatten().sum().item()
    assert _sum == 0, str(_sum)


def deploy_hf(model_name: str, model_path: str, tokenizer_path: str,
              triton_models_path: str, tp: int):
    if tokenizer_path is None:
        tokenizer_path = osp.join(model_path, 'tokenizer.model')
    if osp.exists(tokenizer_path):
        shutil.copy(tokenizer_path,
                    osp.join(triton_models_path, 'tokenizer/tokenizer.model'))
    else:
        print('tokenizer model {tokenizer_path} does not exist')
        exit(-1)

    # read model arguments from params.json
    try:
        params_path = osp.join(model_path, 'config.json')
        with open(params_path) as f:
            model_arg = json.load(f)
            num_layer = model_arg['num_hidden_layers']
            norm_eps = model_arg['rms_norm_eps']
    except Exception as e:
        print(f'get "num_hidden_layers" and "rms_norm_eps" from '
              f'{params_path} failed: {e}')
        return False

    # convert weights from hf to fastertransformer
    model_params = {}

    _qweight = 'weight'
    _suffixes = [_qweight]

    _files = [file for file in os.listdir(model_path) if file.endswith('.bin')]
    _files = sorted(_files)

    _params = {}
    for _file in _files:
        _tmp = torch.load(osp.join(model_path, _file), map_location='cpu')
        _params.update(_tmp)

    def get_tensor(name):
        return _params[name]

    def get_tensor_transposed(name):
        return _params[name].t()

    for i in range(1000):
        try:
            # attention weights
            _qkvo = [f'model.layers.{i}.self_attn.{t}_proj' for t in 'qkvo']
            for suffix in _suffixes:
                q, k, v, o = map(get_tensor_transposed,
                                 map(('{}.' + suffix).format, _qkvo))
                if suffix == 'bias':
                    check_zero(q), check_zero(k), check_zero(v), check_zero(o)
                else:
                    # q, k has different layout for fb & hf, convert to fb's
                    # layout
                    q = permute(q)
                    k = permute(k)
                    if suffix == _qweight:  # weight, qweight
                        # insert a dimension for splitting heads later
                        qkv = torch.stack((q, k, v), dim=1)
                    else:  # scales, zeros
                        qkv = torch.stack((q, k, v), dim=0).squeeze(dim=-1)
                    for k, v in [('w_qkv', qkv), ('wo', o)]:
                        model_params[f'layers.{i}.attention.{k}.{suffix}'] = v
            # ffn weights
            _w123 = [
                f'model.layers.{i}.mlp.{t}_proj'
                for t in ['gate', 'down', 'up']
            ]
            for suffix in _suffixes:
                w1, w2, w3 = map(get_tensor_transposed,
                                 map(('{}.' + suffix).format, _w123))
                if suffix == 'bias':
                    check_zero(w1), check_zero(w2), check_zero(w3)
                else:
                    if suffix in ['scales', 'zeros']:
                        w1, w2, w3 = map(lambda x: x.squeeze(dim=-1),
                                         [w1, w2, w3])
                    for k, v in [('w1', w1), ('w2', w2), ('w3', w3)]:
                        model_params[
                            f'layers.{i}.feed_forward.{k}.{suffix}'] = v
            other = [('attention_norm.weight', 'input_layernorm.weight'),
                     ('ffn_norm.weight', 'post_attention_layernorm.weight')]
            for ft, hf in other:
                model_params[f'layers.{i}.' +
                             ft] = get_tensor(f'model.layers.{i}.' + hf)
        except safetensors.SafetensorError:
            break
        except KeyError:
            break

    assert num_layer == i, 'miss matched layers: {num_layer} vs {i}'

    other = [('tok_embeddings.weight', 'model.embed_tokens.weight'),
             ('norm.weight', 'model.norm.weight'),
             ('output.weight', 'lm_head.weight')]
    for ft, hf in other:
        model_params[ft] = get_tensor(hf)

    return export(model_name, i + 1, norm_eps, model_params, tokenizer_path,
                  triton_models_path, tp)


def pack_model_repository(workspace_path: str):
    model_repo_dir = osp.join(workspace_path, 'model_repository')
    os.makedirs(model_repo_dir, exist_ok=True)
    os.symlink(src=osp.join('../triton_models/interactive'),
               dst=osp.join(model_repo_dir, 'fastertransformer'))
    os.symlink(src=osp.join('../triton_models/preprocessing'),
               dst=osp.join(model_repo_dir, 'preprocessing'))
    os.symlink(src=osp.join('../triton_models/postprocessing'),
               dst=osp.join(model_repo_dir, 'postprocessing'))


def main(model_name: str,
         model_path: str,
         model_format: str,
         tokenizer_path: str = None,
         dst_path: str = './workspace',
         tp: int = 1):
    """deploy llama family models via fastertransformer.

    Args:
        model_name (str): the name of the to-be-deployed model, such as
397
            llama-7b, llama-13b, vicuna-7b and etc
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
        model_path (str): the directory path of the model
        model_format (str): the format of the model, fb or hf. 'fb' stands for
            META's llama format, and 'hf' means huggingface format
        tokenizer_path (str): the path of tokenizer model
        dst_path (str): the destination path that saves outputs
        tp (int): the number of GPUs used for tensor parallelism
    """

    if model_format not in supported_formats:
        print(f'the model format "{model_format}" is not supported. '
              f'The supported format are: {supported_formats}')
        exit(-1)

    if model_format == 'llama' and tokenizer_path is None:
        print('The model is llama. Its tokenizer model path should be '
              'specified')
        exit(-1)

    if not create_workspace(dst_path):
        exit(-1)

    triton_models_path = copy_triton_model_templates(dst_path)
    if triton_models_path is None:
        exit(-1)

    if model_format == 'llama':
        res = deploy_llama(model_name, model_path, tokenizer_path,
                           triton_models_path, tp)
    else:
        res = deploy_hf(model_name, model_path, tokenizer_path,
                        triton_models_path, tp)

    # update `tensor_para_size` in `triton_models/interactive/config.pbtxt`
    with open(osp.join(triton_models_path, 'interactive/config.pbtxt'),
              'a') as f:
        param = 'parameters {\n  key: "tensor_para_size"\n  value: {\n    ' \
            'string_value: ' + f'"{tp}"\n' + '  }\n}\n'
        f.write(param)
    if not res:
        print(f'deploy model "{model_name}" via fastertransformer failed')
        destroy_workspace(dst_path)
        exit(-1)

    # pack model repository for triton inference server
    pack_model_repository(dst_path)

    # update the value of $TP in `service_docker_up.sh`
    file_path = osp.join(dst_path, 'service_docker_up.sh')
    with open(file_path, 'r') as f:
        content = f.read()
        content = re.sub('TP=1', f'TP={tp}', content)
    with open(file_path, 'w') as f:
        f.write(content)


if __name__ == '__main__':
    fire.Fire(main)