profile_serving.py 6.59 KB
Newer Older
lvhan028's avatar
lvhan028 committed
1
2
3
4
5
6
7
8
9
10
11
import json
import multiprocessing as mp
import os
import random
import time
from typing import List

import fire
import numpy as np
from sentencepiece import SentencePieceProcessor

12
from lmdeploy.serve.turbomind.chatbot import Chatbot
lvhan028's avatar
lvhan028 committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171


class Tokenizer:

    def __init__(self, model_path: str):
        # reload tokenizer
        assert os.path.isfile(model_path), model_path
        self.sp_model = SentencePieceProcessor(model_file=model_path)

    def encode(self, prompts: List):
        prompts_token_ids = self.sp_model.Encode(prompts,
                                                 add_bos=False,
                                                 add_eos=False)
        return [len(token_ids) for token_ids in prompts_token_ids]


def infer(chatbot, session_id: int, req_que: mp.Queue, res_que: mp.Queue):
    stats = []
    while not req_que.empty():
        prompt, input_seqlen, output_seqlen = req_que.get()
        print(f'request info: session {session_id}, '
              f'input_seqlen {input_seqlen}, output_seqlen {output_seqlen}')
        timestamps = []
        tokens = []
        start = time.perf_counter()
        for status, res, token in chatbot.stream_infer(
                session_id,
                prompt,
                request_output_len=output_seqlen,
                sequence_start=True,
                sequence_end=True):
            timestamps.append(time.perf_counter())
            tokens.append(token)
        chatbot.reset_session()

        first_token_latency = timestamps[1] - start
        token_latency = timestamps[-1] - timestamps[0]
        token = tokens[-1] - tokens[0]
        stats.append([first_token_latency, token, token_latency])
    res_que.put((session_id, stats))


def warmup(tritonserver_addr: str,
           model_name: str,
           concurrency: int,
           session_len: int,
           output_seqlen: int,
           warmup_round: int = 4):
    print('start to warmup ...')

    def _infer(_chatbot, session_id):
        for _ in range(warmup_round):
            for _, _, _ in chatbot.stream_infer(
                    session_id,
                    prompt='',
                    request_output_len=output_seqlen,
                    sequence_start=True,
                    sequence_end=True):
                continue
            chatbot.reset_session()

    _start = time.perf_counter()
    chatbots = [
        Chatbot(tritonserver_addr=tritonserver_addr,
                model_name=model_name,
                session_len=session_len,
                ignore_eos=True,
                profile_generation=True) for _ in range(concurrency)
    ]
    procs = []
    for i, chatbot in enumerate(chatbots):
        proc = mp.Process(target=_infer, args=(chatbot, i + 1))
        procs.append(proc)
        proc.start()
    for proc in procs:
        proc.join()
    _end = time.perf_counter()
    print(f'end warmup, elapsed time: {round(_end - _start, 2)} s')


def read_dataset(tritonserver_addr, tokenizer_path: str, dataset_path: str,
                 samples: int, test_round: int, session_len: int):
    start = time.perf_counter()
    with open(dataset_path) as f:
        dataset = json.load(f)
        dataset = [data for data in dataset if len(data['conversations']) >= 2]
        # Only keep the first two turns of each conversation.
        dataset = [(data['conversations'][0]['value'],
                    data['conversations'][1]['value']) for data in dataset]
        prompts = [prompt for prompt, _ in dataset]
        completions = [completion for _, completion in dataset]
        print(f'elapsed time for read data: '
              f'{round(time.perf_counter() - start, 2)} s')

    start = time.perf_counter()
    tokenizer = Tokenizer(tokenizer_path)
    prompts_token_lens = tokenizer.encode(prompts)
    completions_token_lens = tokenizer.encode(completions)
    print(f'elapsed time for tokenization: '
          f'{round(time.perf_counter() - start, 2)} s')

    start = time.perf_counter()
    filtered_dataset = []
    for (prompt, _), input_len, output_len in zip(dataset, prompts_token_lens,
                                                  completions_token_lens):
        if input_len + output_len > session_len:
            # ignore too long conversation
            continue
        filtered_dataset.append([prompt, input_len, output_len])

    if samples > 0:
        filtered_dataset = random.sample(filtered_dataset, samples)

    filtered_dataset *= test_round
    random.shuffle(filtered_dataset)
    que = mp.Queue()
    for data in filtered_dataset:
        que.put(data)
    print(f'elapsed time for filtering: '
          f'{round(time.perf_counter() - start, 2)} s')
    return que


def main(tritonserver_addr: str,
         model_name: str,
         tokenizer_path: str,
         dataset_path: str,
         concurrency: int = 1,
         session_len: int = 2048,
         samples: int = 2000,
         test_round: int = 1):
    warmup(tritonserver_addr, model_name, concurrency, session_len,
           session_len)
    req_que = read_dataset(tritonserver_addr, tokenizer_path, dataset_path,
                           samples, test_round, session_len)
    res_que = mp.Queue()
    procs = []
    _start = time.perf_counter()
    for i in range(concurrency):
        chatbot = Chatbot(tritonserver_addr=tritonserver_addr,
                          model_name=model_name,
                          session_len=session_len,
                          display=False,
                          profile_serving=True,
                          ignore_eos=True)
        proc = mp.Process(target=infer,
                          args=(chatbot, i + 1, req_que, res_que))
        procs.append(proc)
        proc.start()
    for proc in procs:
        proc.join()
    _end = time.perf_counter()
    elapsed_time = _end - _start

    stats = []
    while not res_que.empty():
        session_id, _stats = res_que.get()
        print(f'\n{"-" * 50}\n'
              f'session {session_id} stats: \n{_stats}\n{"-" * 50}\n')
172
        stats.append(np.array(_stats))
lvhan028's avatar
lvhan028 committed
173

174
    stats = np.concatenate(stats).reshape(-1, 3)
lvhan028's avatar
lvhan028 committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

    first_token_latency_min = np.min(stats[:, 0], axis=0)
    first_token_latency_max = np.max(stats[:, 0], axis=0)
    first_token_latency_ave = np.mean(stats[:, 0], axis=0)
    throughput = np.sum(stats[:, 1], axis=0) / elapsed_time
    print(f'\n{"-" * 50}\ncocurrency: {concurrency}\n'
          f'elapsed_time: {elapsed_time:.2f}s\n'
          f'first_token latency(min, max, ave): '
          f'{first_token_latency_min:.2f}s, {first_token_latency_max:.2f}s, '
          f'{first_token_latency_ave:.2f}s\n'
          f'throughput: {throughput:.2f} token/s\n{"-" * 50}')


if __name__ == '__main__':
    fire.Fire(main)