bls_utils.cc 6.96 KB
Newer Older
xiabo's avatar
xiabo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// Copyright 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of NVIDIA CORPORATION nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "bls_utils.h"

namespace triton { namespace backend { namespace bls {

TRITONSERVER_Error*
CPUAllocator(
    TRITONSERVER_ResponseAllocator* allocator, const char* tensor_name,
    size_t byte_size, TRITONSERVER_MemoryType preferred_memory_type,
    int64_t preferred_memory_type_id, void* userp, void** buffer,
    void** buffer_userp, TRITONSERVER_MemoryType* actual_memory_type,
    int64_t* actual_memory_type_id)
{
  // For simplicity, this backend example always uses CPU memory regardless of
  // the preferred memory type. You can make the actual memory type and id that
  // we allocate be the same as preferred memory type. You can also provide a
  // customized allocator to support different preferred_memory_type, and reuse
  // memory buffer when possible.
  *actual_memory_type = TRITONSERVER_MEMORY_CPU;
  *actual_memory_type_id = preferred_memory_type_id;

  // If 'byte_size' is zero just return 'buffer' == nullptr, we don't
  // need to do any other book-keeping.
  if (byte_size == 0) {
    *buffer = nullptr;
    *buffer_userp = nullptr;
    LOG_MESSAGE(
        TRITONSERVER_LOG_VERBOSE, ("allocated " + std::to_string(byte_size) +
                                   " bytes for result tensor " + tensor_name)
                                      .c_str());
  } else {
    void* allocated_ptr = nullptr;
    *actual_memory_type = TRITONSERVER_MEMORY_CPU;
    allocated_ptr = malloc(byte_size);

    // Pass the tensor name with buffer_userp so we can show it when
    // releasing the buffer.
    if (allocated_ptr != nullptr) {
      *buffer = allocated_ptr;
      *buffer_userp = new std::string(tensor_name);
      LOG_MESSAGE(
          TRITONSERVER_LOG_VERBOSE,
          ("allocated " + std::to_string(byte_size) + " bytes in " +
           TRITONSERVER_MemoryTypeString(*actual_memory_type) +
           " for result tensor " + tensor_name)
              .c_str());
    }
  }

  return nullptr;  // Success
}

TRITONSERVER_Error*
ResponseRelease(
    TRITONSERVER_ResponseAllocator* allocator, void* buffer, void* buffer_userp,
    size_t byte_size, TRITONSERVER_MemoryType memory_type,
    int64_t memory_type_id)
{
  std::string* name = nullptr;
  if (buffer_userp != nullptr) {
    name = reinterpret_cast<std::string*>(buffer_userp);
  } else {
    name = new std::string("<unknown>");
  }

  std::stringstream ss;
  ss << buffer;
  std::string buffer_str = ss.str();

  LOG_MESSAGE(
      TRITONSERVER_LOG_VERBOSE,
      ("Releasing buffer " + buffer_str + " of size " +
       std::to_string(byte_size) + " in " +
       TRITONSERVER_MemoryTypeString(memory_type) + " for result '" + *name)
          .c_str());

  switch (memory_type) {
    case TRITONSERVER_MEMORY_CPU:
      free(buffer);
      break;
    default:
      LOG_MESSAGE(
          TRITONSERVER_LOG_ERROR,
          std::string(
              "error: unexpected buffer allocated in CUDA managed memory")
              .c_str());
      break;
  }

  delete name;

  return nullptr;  // Success
}

void
InferRequestComplete(
    TRITONSERVER_InferenceRequest* request, const uint32_t flags, void* userp)
{
  if (request != nullptr) {
    LOG_IF_ERROR(
        TRITONSERVER_InferenceRequestDelete(request),
        "Failed to delete inference request.");
  }
}

void
InferResponseComplete(
    TRITONSERVER_InferenceResponse* response, const uint32_t flags, void* userp)
{
  // The following logic only works for non-decoupled models as for decoupled
  // models it may send multiple responses for a request or not send any
  // responses for a request. Need to modify this function if the model is using
  // decoupled API.
  if (response != nullptr) {
    // Send 'response' to the future.
    std::promise<TRITONSERVER_InferenceResponse*>* p =
        reinterpret_cast<std::promise<TRITONSERVER_InferenceResponse*>*>(userp);
    p->set_value(response);
    delete p;
  }
}

ModelExecutor::ModelExecutor(TRITONSERVER_Server* server) : server_(server)
{
  // When triton needs a buffer to hold an output tensor, it will ask
  // us to provide the buffer. In this way we can have any buffer
  // management and sharing strategy that we want. To communicate to
  // triton the functions that we want it to call to perform the
  // allocations, we create a "response allocator" object. We pass
  // this response allocate object to triton when requesting
  // inference. We can reuse this response allocator object for any
  // number of inference requests.
  allocator_ = nullptr;
  THROW_IF_TRITON_ERROR(TRITONSERVER_ResponseAllocatorNew(
      &allocator_, CPUAllocator, ResponseRelease, nullptr /* start_fn */));
}

TRITONSERVER_Error*
ModelExecutor::AsyncExecute(
    TRITONSERVER_InferenceRequest* irequest,
    std::future<TRITONSERVER_InferenceResponse*>* future)
{
  // Perform inference by calling TRITONSERVER_ServerInferAsync. This
  // call is asychronous and therefore returns immediately. The
  // completion of the inference and delivery of the response is done
  // by triton by calling the "response complete" callback functions
  // (InferResponseComplete in this case).
  auto p = new std::promise<TRITONSERVER_InferenceResponse*>();
  *future = p->get_future();

  RETURN_IF_ERROR(TRITONSERVER_InferenceRequestSetResponseCallback(
      irequest, allocator_, nullptr /* response_allocator_userp */,
      InferResponseComplete, reinterpret_cast<void*>(p)));

  RETURN_IF_ERROR(
      TRITONSERVER_ServerInferAsync(server_, irequest, nullptr /* trace */));

  return nullptr;  // success
}

}}}  // namespace triton::backend::bls