fattn-tile-f16.cu 12.6 KB
Newer Older
xuxzh1's avatar
init  
xuxzh1 committed
1
2
3
4
5
6
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-tile-f16.cuh"

#define FATTN_KQ_STRIDE_TILE_F16 64

xuxzh1's avatar
update  
xuxzh1 committed
7
8
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
xuxzh1's avatar
init  
xuxzh1 committed
9
__launch_bounds__(nwarps*WARP_SIZE, 1)
xuxzh1's avatar
update  
xuxzh1 committed
10
11
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
static __global__ void flash_attn_tile_ext_f16(
xuxzh1's avatar
init  
xuxzh1 committed
12
13
14
15
16
17
18
19
20
21
22
        const char * __restrict__ Q,
        const char * __restrict__ K,
        const char * __restrict__ V,
        const char * __restrict__ mask,
        float      * __restrict__ dst,
        float2     * __restrict__ dst_meta,
        const float scale,
        const float max_bias,
        const float m0,
        const float m1,
        const uint32_t n_head_log2,
xuxzh1's avatar
update  
xuxzh1 committed
23
        const float logit_softcap,
xuxzh1's avatar
init  
xuxzh1 committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
        const int ne00,
        const int ne01,
        const int ne02,
        const int ne03,
        const int ne10,
        const int ne11,
        const int ne12,
        const int ne13,
        const int ne31,
        const int nb31,
        const int nb01,
        const int nb02,
        const int nb03,
        const int nb11,
        const int nb12,
        const int nb13,
        const int nb21,
        const int nb22,
        const int nb23,
        const int ne0,
        const int ne1,
        const int ne2,
        const int ne3) {
#ifdef FP16_AVAILABLE
xuxzh1's avatar
update  
xuxzh1 committed
48
49
50
51
52
53
    // Skip unused kernel variants for faster compilation:
    if (use_logit_softcap && !(D == 128 || D == 256)) {
        NO_DEVICE_CODE;
        return;
    }

xuxzh1's avatar
init  
xuxzh1 committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    //In this kernel Q, K, V are matrices while i, j, k are matrix indices.

    const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
    const int ip  =  blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.

    const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
    const float2 * Q_f2  = (const float2 *) (Q    + nb02* blockIdx.y              + nb01*ic0);
    const half2  * K_h2  = (const half2  *) (K    + nb12*(blockIdx.y / gqa_ratio));
    const half2  * V_h2  = (const half2  *) (V    + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
    const half   * maskh = (const half   *)  mask + ne11*ic0;

    const int stride_KV2 = nb11 / sizeof(half2);

    const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
    const half  slopeh = __float2half(slopef);

    static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");

    __shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16];
    half2 * KQ2 = (half2 *) KQ;

    __shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts.

    half kqmax[ncols/nwarps];
#pragma unroll
    for (int j0 = 0; j0 < ncols; j0 += nwarps) {
        kqmax[j0/nwarps] = -HALF_MAX_HALF;
    }
    half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}};

    half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};

    // Convert Q to half2 and store in registers:
    __shared__ half2 Q_h2[ncols][D/2];
#pragma unroll
    for (int j0 = 0; j0 < ncols; j0 += nwarps) {
        const int j = j0 + threadIdx.y;

#pragma unroll
        for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
            const int i = i0 + threadIdx.x;

            const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
            Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
        }
    }

    __syncthreads();

    const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F16;
    for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F16) {
        // Calculate KQ tile and keep track of new maximum KQ values:

        half kqmax_new[ncols/nwarps];
#pragma unroll
        for (int j = 0; j < ncols/nwarps; ++j) {
            kqmax_new[j] = kqmax[j];
        }

#pragma unroll
        for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) {
            const int i_KQ = i_KQ_0 + threadIdx.y;

#pragma unroll
            for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
                const int k_KQ = k_KQ_0 + threadIdx.x;

                KV_tmp[i_KQ][k_KQ] = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
            }
        }

        __syncthreads();

        half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}};

#pragma unroll
        for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) {
            half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE];
            half2 Q_k[ncols/nwarps];

#pragma unroll
            for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
                const int i_KQ = i_KQ_0 + threadIdx.x;

                K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
            }
#pragma unroll
            for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
                const int j_KQ = j_KQ_0 + threadIdx.y;

                Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ];
            }

#pragma unroll
            for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
#pragma unroll
                for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
                    sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps];
                }
            }
        }

#pragma unroll
        for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
            const int i_KQ = i_KQ_0 + threadIdx.x;

#pragma unroll
            for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
                const int j_KQ = j_KQ_0 + threadIdx.y;

xuxzh1's avatar
update  
xuxzh1 committed
164
165
166
167
168
169
170
                half sum;
                if (use_logit_softcap) {
                    const float2 tmp = __half22float2(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
                    sum = logit_softcap * tanhf(tmp.x + tmp.y);
                } else {
                    sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
                }
xuxzh1's avatar
init  
xuxzh1 committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
                sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);

                kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);

                KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum;
            }
        }

        __syncthreads();

#pragma unroll
        for (int j0 = 0; j0 < ncols; j0 += nwarps) {
            const int j = j0 + threadIdx.y;

            kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
            const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]));
            kqmax[j0/nwarps] = kqmax_new[j0/nwarps];

#pragma unroll
            for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) {
                const int i = i0 + threadIdx.x;

                const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]);
                const half2 val = h2exp(diff);
                kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val;
                KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val;
            }

#pragma unroll
            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
                VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;
            }
        }

        __syncthreads();

#pragma unroll
        for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) {
            const int k = k0 + threadIdx.y;

#pragma unroll
            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
                const int i = i0 + threadIdx.x;

                KV_tmp[k][i] = V_h2[(k_VKQ_0 + k)*stride_KV2 + i];
            }
        }

        __syncthreads();

#pragma unroll
        for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) {
            half2  V_k[(D/2)/WARP_SIZE][2];
            half2 KQ_k[ncols/nwarps];

#pragma unroll
            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
                const int i = i0 + threadIdx.x;

                V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i];
                V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i];
            }
#pragma unroll
            for (int j0 = 0; j0 < ncols; j0 += nwarps) {
                const int j = j0 + threadIdx.y;

                KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2];
            }

#pragma unroll
            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
#pragma unroll
                for (int j0 = 0; j0 < ncols; j0 += nwarps) {
                    VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]);
                    VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]);
                }
            }
        }

        __syncthreads();
    }

#pragma unroll
    for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
        const int j_VKQ = j_VKQ_0 + threadIdx.y;

        if (ic0 + j_VKQ >= ne01) {
            return;
        }

        half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
xuxzh1's avatar
update  
xuxzh1 committed
262
        kqsum_j = warp_reduce_sum((float)kqsum_j);
xuxzh1's avatar
init  
xuxzh1 committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

#pragma unroll
        for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
            const int i0 = i00 + 2*threadIdx.x;

            half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
            if (parallel_blocks == 1) {
                dst_val /= __half2half2(kqsum_j);
            }
            const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
            dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] =  __low2float(dst_val);
            dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = __high2float(dst_val);
        }

        if (parallel_blocks != 1 && threadIdx.x == 0) {
            dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
        }
    }
#else
   NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
}

xuxzh1's avatar
update  
xuxzh1 committed
286
template <int cols_per_block, int parallel_blocks, bool use_logit_softcap>
xuxzh1's avatar
init  
xuxzh1 committed
287
288
289
290
291
292
void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * Q = dst->src[0];
    switch (Q->ne[0]) {
        case  64: {
            constexpr int      D = 64;
            constexpr int nwarps = 8;
xuxzh1's avatar
update  
xuxzh1 committed
293
            fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
xuxzh1's avatar
init  
xuxzh1 committed
294
295
296
297
298
            launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
        } break;
        case 128: {
            constexpr int      D = 128;
            constexpr int nwarps = 8;
xuxzh1's avatar
update  
xuxzh1 committed
299
            fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
xuxzh1's avatar
init  
xuxzh1 committed
300
301
302
303
304
305
306
307
308
309
310
311
            launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
        } break;
        default: {
            GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
        } break;
    }
}

void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * KQV = dst;
    const ggml_tensor * Q   = dst->src[0];

xuxzh1's avatar
update  
xuxzh1 committed
312
    const int32_t precision = KQV->op_params[3];
xuxzh1's avatar
init  
xuxzh1 committed
313
314
    GGML_ASSERT(precision == GGML_PREC_DEFAULT);

xuxzh1's avatar
update  
xuxzh1 committed
315
316
317
    float logit_softcap;
    memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));

xuxzh1's avatar
init  
xuxzh1 committed
318
319
320
    if (Q->ne[1] <= 16) {
        constexpr int cols_per_block = 16;
        constexpr int parallel_blocks = 4;
xuxzh1's avatar
update  
xuxzh1 committed
321
322
323
324
325
326
327
        if (logit_softcap == 0.0f) {
            constexpr bool use_logit_softcap = false;
            launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
        } else {
            constexpr bool use_logit_softcap = true;
            launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
        }
xuxzh1's avatar
init  
xuxzh1 committed
328
329
330
331
332
333
        return;
    }

    if (Q->ne[1] <= 32) {
        constexpr int cols_per_block = 32;
        constexpr int parallel_blocks = 4;
xuxzh1's avatar
update  
xuxzh1 committed
334
335
336
337
338
339
340
        if (logit_softcap == 0.0f) {
            constexpr bool use_logit_softcap = false;
            launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
        } else {
            constexpr bool use_logit_softcap = true;
            launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
        }
xuxzh1's avatar
init  
xuxzh1 committed
341
342
343
344
345
        return;
    }

    constexpr int cols_per_block = 32;
    constexpr int parallel_blocks = 1;
xuxzh1's avatar
update  
xuxzh1 committed
346
347
348
349
350
351
352
    if (logit_softcap == 0.0f) {
        constexpr bool use_logit_softcap = false;
        launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
    } else {
        constexpr bool use_logit_softcap = true;
        launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
    }
xuxzh1's avatar
init  
xuxzh1 committed
353
}