binbcast.cu 12.8 KB
Newer Older
xuxzh1's avatar
init  
xuxzh1 committed
1
#include "binbcast.cuh"
xuxzh1's avatar
update  
xuxzh1 committed
2
#include <cstdint>
xuxzh1's avatar
init  
xuxzh1 committed
3
4
5
6
7
8
9
10
11
12

static __device__ __forceinline__ float op_repeat(const float a, const float b) {
    return b;
    GGML_UNUSED(a);
}

static __device__ __forceinline__ float op_add(const float a, const float b) {
    return a + b;
}

xuxzh1's avatar
update  
xuxzh1 committed
13
14
15
16
static __device__ __forceinline__ float op_sub(const float a, const float b) {
    return a - b;
}

xuxzh1's avatar
init  
xuxzh1 committed
17
18
19
20
21
22
23
24
25
static __device__ __forceinline__ float op_mul(const float a, const float b) {
    return a * b;
}

static __device__ __forceinline__ float op_div(const float a, const float b) {
    return a / b;
}

template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
xuxzh1's avatar
update  
xuxzh1 committed
26
static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
xuxzh1's avatar
init  
xuxzh1 committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        int ne0, int ne1, int ne2, int ne3,
        int ne10, int ne11, int ne12, int ne13,
        /*int s0, */ int s1,  int s2,  int s3,
        /*int s00,*/ int s01, int s02, int s03,
        /*int s10,*/ int s11, int s12, int s13) {
    const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
    const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
    const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
    const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;

    if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
        return;
    }

    const int i11 = i1 % ne11;
    const int i12 = i2 % ne12;
    const int i13 = i3 % ne13;

    const size_t i_src0 =  i3*s03 +  i2*s02 +  i1*s01;
    const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
    const size_t i_dst  =  i3*s3  +  i2*s2  +  i1*s1;

    const src0_t * src0_row = src0 + i_src0;
    const src1_t * src1_row = src1 + i_src1;
    dst_t * dst_row = dst + i_dst;

    for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
        const int i10 = i0 % ne10;
        dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
    }
}

template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
xuxzh1's avatar
update  
xuxzh1 committed
60
static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
xuxzh1's avatar
init  
xuxzh1 committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        int ne0, int ne1, int ne2, int ne3,
        int ne10, int ne11, int ne12, int ne13,
        /*int s0, */ int s1,  int s2,  int s3,
        /*int s00,*/ int s01, int s02, int s03,
        /*int s10,*/ int s11, int s12, int s13) {

    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    const int i3 = i/(ne2*ne1*ne0);
    const int i2 = (i/(ne1*ne0)) % ne2;
    const int i1 = (i/ne0) % ne1;
    const int i0 = i % ne0;

    if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
        return;
    }

    const int i11 = i1 % ne11;
    const int i12 = i2 % ne12;
    const int i13 = i3 % ne13;

    const size_t i_src0 =  i3*s03 +  i2*s02 +  i1*s01;
    const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
    const size_t i_dst  =  i3*s3  +  i2*s2  +  i1*s1;

    const src0_t * src0_row = src0 + i_src0;
    const src1_t * src1_row = src1 + i_src1;
    dst_t * dst_row = dst + i_dst;

    const int i10 = i0 % ne10;
    dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}

xuxzh1's avatar
update  
xuxzh1 committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
template <typename T>
static __global__ void k_repeat_back(
    const T * __restrict__ src, T * __restrict__ dst, const int64_t ne00, const int64_t ne01, const int64_t ne02,
    const int64_t ne0, const int64_t ne1, const int64_t ne2) {

    const int64_t tid0 = (int64_t) blockIdx.x*blockDim.x + threadIdx.x;
    const int64_t tid1 = (int64_t) blockIdx.y*blockDim.y + threadIdx.y;
    const int64_t tid2 = (int64_t) blockIdx.z*blockDim.z + threadIdx.z;

    if (tid0 >= ne0) {
        return;
    }

    T sum = 0;
    for (int64_t i2 = tid2; i2 < ne02; i2 += ne2) {
        for (int64_t i1 = tid1; i1 < ne01; i1 += ne1) {
            for (int64_t i0 = tid0; i0 < ne00; i0 += ne0) {
                sum += src[i2*ne01*ne00 + i1*ne00 + i0];
            }
        }
    }
    dst[tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
}

xuxzh1's avatar
init  
xuxzh1 committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
template<float (*bin_op)(const float, const float)>
struct bin_bcast_cuda {
    template<typename src0_t, typename src1_t, typename dst_t>
    void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
            const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
            cudaStream_t stream) {

        GGML_TENSOR_BINARY_OP_LOCALS

        int nr0 = ne10/ne0;
        int nr1 = ne11/ne1;
        int nr2 = ne12/ne2;
        int nr3 = ne13/ne3;

        int nr[4] = { nr0, nr1, nr2, nr3 };

        // collapse dimensions until first broadcast dimension
        int64_t cne[] = {ne0, ne1, ne2, ne3};
        int64_t cne0[] = {ne00, ne01, ne02, ne03};
        int64_t cne1[] = {ne10, ne11, ne12, ne13};

        size_t cnb[] = {nb0, nb1, nb2, nb3};
        size_t cnb0[] = {nb00, nb01, nb02, nb03};
        size_t cnb1[] = {nb10, nb11, nb12, nb13};

        auto collapse = [](int64_t cne[]) {
            cne[0] *= cne[1];
            cne[1] = cne[2];
            cne[2] = cne[3];
            cne[3] = 1;
        };

        auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
            cnb[1] *= cne[1];
            cnb[2] *= cne[2];
            cnb[3] *= cne[3];
        };

        if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
            for (int i = 0; i < 4; i++) {
                if (nr[i] != 1) {
                    break;
                }
                if (i > 0) {
                    collapse_nb(cnb, cne);
                    collapse_nb(cnb0, cne0);
                    collapse_nb(cnb1, cne1);
                    collapse(cne);
                    collapse(cne0);
                    collapse(cne1);
                }
            }
        }

        {
            int64_t ne0 = cne[0];
            int64_t ne1 = cne[1];
            int64_t ne2 = cne[2];
            int64_t ne3 = cne[3];

            //int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
            //int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
            //int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
            //int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);

            int64_t ne10 = cne1[0];
            int64_t ne11 = cne1[1];
            int64_t ne12 = cne1[2];
            int64_t ne13 = cne1[3];

            size_t nb0 = cnb[0];
            size_t nb1 = cnb[1];
            size_t nb2 = cnb[2];
            size_t nb3 = cnb[3];

            size_t nb00 = cnb0[0];
            size_t nb01 = cnb0[1];
            size_t nb02 = cnb0[2];
            size_t nb03 = cnb0[3];

            size_t nb10 = cnb1[0];
            size_t nb11 = cnb1[1];
            size_t nb12 = cnb1[2];
            size_t nb13 = cnb1[3];

            size_t s0 = nb0 / sizeof(dst_t);
            size_t s1 = nb1 / sizeof(dst_t);
            size_t s2 = nb2 / sizeof(dst_t);
            size_t s3 = nb3 / sizeof(dst_t);

            size_t s10 = nb10 / sizeof(src1_t);
            size_t s11 = nb11 / sizeof(src1_t);
            size_t s12 = nb12 / sizeof(src1_t);
            size_t s13 = nb13 / sizeof(src1_t);

            size_t s00 = nb00 / sizeof(src0_t);
            size_t s01 = nb01 / sizeof(src0_t);
            size_t s02 = nb02 / sizeof(src0_t);
            size_t s03 = nb03 / sizeof(src0_t);

            GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
            GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
            GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
            GGML_ASSERT(nb3 % sizeof(dst_t) == 0);

            GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
            GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
            GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
            GGML_ASSERT(nb03 % sizeof(src0_t) == 0);

            GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
            GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
            GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
            GGML_ASSERT(nb13 % sizeof(src1_t) == 0);

            GGML_ASSERT(s0 == 1);
            GGML_ASSERT(s00 == 1);
            GGML_ASSERT(s10 == 1);

            const int block_size = 128;

            int64_t hne0 = std::max(ne0/2LL, 1LL);

            dim3 block_dims;
            block_dims.x = std::min<unsigned int>(hne0, block_size);
            block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
            block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);

            dim3 block_nums(
                (hne0 + block_dims.x - 1) / block_dims.x,
                (ne1 + block_dims.y - 1) / block_dims.y,
                (ne2*ne3 + block_dims.z - 1) / block_dims.z
            );

            if (block_nums.z > 65535) {
                // this is the maximum number of blocks in z dimension, fallback to 1D grid kernel
                int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
                k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
                    src0_dd, src1_dd, dst_dd,
                    ne0, ne1, ne2, ne3,
                    ne10, ne11, ne12, ne13,
                    /* s0, */ s1, s2, s3,
                    /* s00, */ s01, s02, s03,
                    /* s10, */ s11, s12, s13);
            } else {
                k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
                    src0_dd, src1_dd, dst_dd,
                    ne0, ne1, ne2, ne3,
                    ne10, ne11, ne12, ne13,
                    /* s0, */ s1, s2, s3,
                    /* s00, */ s01, s02, s03,
                    /* s10, */ s11, s12, s13);
            }
        }
    }
};

xuxzh1's avatar
update  
xuxzh1 committed
275
276
277
278
279
280
281
282
283
284
template <typename T>
static void repeat_back_cuda(
    const T * src, T * dst, const int64_t ne00, const int64_t ne01, const int64_t ne02,
    const int64_t ne0, const int64_t ne1, const int64_t ne2, cudaStream_t stream) {

    const dim3 block_dims(WARP_SIZE, 1, 1);
    const dim3 block_nums((ne0 + WARP_SIZE - 1) / WARP_SIZE, ne1, ne2);
    k_repeat_back<T><<<block_nums, block_dims, 0, stream>>>(src, dst, ne00, ne01, ne02, ne0, ne1, ne2);
}

xuxzh1's avatar
init  
xuxzh1 committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
template<class op>
static void ggml_cuda_op_bin_bcast(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
    const void * src0_dd, const void * src1_dd, void * dst_dd, cudaStream_t stream) {

    GGML_ASSERT(src1->type == GGML_TYPE_F32);

    if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
        op()(src0, src1, dst, (const float *)src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
    } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
        op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (half *) dst_dd, stream);
    } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
        op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
    } else {
        fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
            ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
        GGML_ABORT("fatal error");
    }
}

void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
}

void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
}

xuxzh1's avatar
update  
xuxzh1 committed
313
314
315
316
void ggml_cuda_op_sub(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_sub>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
}

xuxzh1's avatar
init  
xuxzh1 committed
317
318
319
320
321
322
323
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
}

void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
}
xuxzh1's avatar
update  
xuxzh1 committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];

    GGML_ASSERT(src0->type == dst->type);
    GGML_ASSERT(ggml_is_contiguous(src0));
    GGML_ASSERT(ggml_is_contiguous(dst));
    GGML_ASSERT(ggml_can_repeat(dst, src0));

    cudaStream_t stream = ctx.stream();

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];
    GGML_ASSERT(src0->ne[3] == 1);

    const int64_t ne0 = dst->ne[0];
    const int64_t ne1 = dst->ne[1];
    const int64_t ne2 = dst->ne[2];
    GGML_ASSERT(dst->ne[3] == 1);

    switch (dst->type) {
        case GGML_TYPE_F32: {
            const float * src0_d = (const float *) src0->data;
            float       * dst_d  = (float       *) dst->data;
            repeat_back_cuda<float>(src0_d, dst_d, ne00, ne01, ne02, ne0, ne1, ne2, stream);
        } break;
        default: {
            GGML_ASSERT(false);
        } break;
    }
}