argsort.cu 3.35 KB
Newer Older
xuxzh1's avatar
init  
xuxzh1 committed
1
2
3
4
5
6
7
8
9
10
#include "argsort.cuh"

template<typename T>
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
    T tmp = a;
    a = b;
    b = tmp;
}

template<ggml_sort_order order>
xuxzh1's avatar
update  
xuxzh1 committed
11
static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ncols_pad) {
xuxzh1's avatar
init  
xuxzh1 committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    // bitonic sort
    int col = threadIdx.x;
    int row = blockIdx.y;

    if (col >= ncols_pad) {
        return;
    }

    const float * x_row = x + row * ncols;
    extern __shared__ int dst_row[];

    // initialize indices
    dst_row[col] = col;

    __syncthreads();

    for (int k = 2; k <= ncols_pad; k *= 2) {
        for (int j = k / 2; j > 0; j /= 2) {
            int ixj = col ^ j;
            if (ixj > col) {
                if ((col & k) == 0) {
                    if (dst_row[col] >= ncols ||
                        (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
                            x_row[dst_row[col]] > x_row[dst_row[ixj]] :
                            x_row[dst_row[col]] < x_row[dst_row[ixj]]))
                    ) {
                        ggml_cuda_swap(dst_row[col], dst_row[ixj]);
                    }
                } else {
                    if (dst_row[ixj] >= ncols ||
                        (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
                            x_row[dst_row[col]] < x_row[dst_row[ixj]] :
                            x_row[dst_row[col]] > x_row[dst_row[ixj]]))
                    ) {
                        ggml_cuda_swap(dst_row[col], dst_row[ixj]);
                    }
                }
            }
            __syncthreads();
        }
    }

    // copy the result to dst without the padding
    if (col < ncols) {
        dst[row * ncols + col] = dst_row[col];
    }
}

static int next_power_of_2(int x) {
    int n = 1;
    while (n < x) {
        n *= 2;
    }
    return n;
}

static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
    // bitonic sort requires ncols to be power of 2
    const int ncols_pad = next_power_of_2(ncols);

    const dim3 block_dims(ncols_pad, 1, 1);
    const dim3 block_nums(1, nrows, 1);
    const size_t shared_mem = ncols_pad * sizeof(int);

    // FIXME: this limit could be raised by ~2-4x on Ampere or newer
    GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);

    if (order == GGML_SORT_ORDER_ASC) {
        k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
    } else if (order == GGML_SORT_ORDER_DESC) {
        k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
    } else {
        GGML_ABORT("fatal error");
    }
}

void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_I32);
    GGML_ASSERT(ggml_is_contiguous(src0));

    const int64_t ncols = src0->ne[0];
    const int64_t nrows = ggml_nrows(src0);

    enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];

    argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
}