save-load-state.cpp 8.15 KB
Newer Older
xuxzh1's avatar
update  
xuxzh1 committed
1
#include "arg.h"
xuxzh1's avatar
init  
xuxzh1 committed
2
3
4
5
6
7
8
#include "common.h"
#include "llama.h"

#include <vector>
#include <cstdio>

int main(int argc, char ** argv) {
xuxzh1's avatar
update  
xuxzh1 committed
9
    common_params params;
xuxzh1's avatar
init  
xuxzh1 committed
10
11

    params.prompt = "The quick brown fox";
xuxzh1's avatar
update  
xuxzh1 committed
12
    params.sampling.seed = 1234;
xuxzh1's avatar
init  
xuxzh1 committed
13

xuxzh1's avatar
update  
xuxzh1 committed
14
    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
xuxzh1's avatar
init  
xuxzh1 committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
        return 1;
    }

    print_build_info();

    if (params.n_predict < 0) {
        params.n_predict = 16;
    }

    auto n_past = 0;

    std::string result0;
    std::string result1;
    std::string result2;

    // init
xuxzh1's avatar
update  
xuxzh1 committed
31
    common_init_result llama_init = common_init_from_params(params);
xuxzh1's avatar
init  
xuxzh1 committed
32
33
34
35
36
37
38
39
40

    llama_model * model = llama_init.model;
    llama_context * ctx = llama_init.context;

    if (model == nullptr || ctx == nullptr) {
        fprintf(stderr, "%s : failed to init\n", __func__);
        return 1;
    }

xuxzh1's avatar
update  
xuxzh1 committed
41
42
43
44
45
46
    auto sparams = llama_sampler_chain_default_params();

    llama_sampler * smpl = llama_sampler_chain_init(sparams);

    llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sampling.seed));

xuxzh1's avatar
init  
xuxzh1 committed
47
    // tokenize prompt
xuxzh1's avatar
update  
xuxzh1 committed
48
49
50
51
52
53
54
55
    auto tokens = common_tokenize(ctx, params.prompt, true);

    // prepare the batch
    llama_batch batch = llama_batch_init(tokens.size(), 0, 1);
    for (size_t i = 0; i < tokens.size(); i++) {
        common_batch_add(batch, tokens[i], i, {0}, false);
    }
    batch.logits[batch.n_tokens - 1] = true; // generate next token
xuxzh1's avatar
init  
xuxzh1 committed
56
57

    // evaluate prompt
xuxzh1's avatar
update  
xuxzh1 committed
58
59
    llama_decode(ctx, batch);
    n_past += batch.n_tokens;
xuxzh1's avatar
init  
xuxzh1 committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

    // save state (rng, logits, embedding and kv_cache) to file
    {
        std::vector<uint8_t> state_mem(llama_state_get_size(ctx));
        const size_t written = llama_state_get_data(ctx, state_mem.data(), state_mem.size());

        FILE *fp_write = fopen("dump_state.bin", "wb");
        fwrite(state_mem.data(), 1, written, fp_write);
        fclose(fp_write);

        fprintf(stderr, "%s : serialized state into %zd out of a maximum of %zd bytes\n", __func__, written, state_mem.size());
    }

    // save state (last tokens)
    const auto n_past_saved = n_past;

    // first run
    printf("\nfirst run: %s", params.prompt.c_str());

    for (auto i = 0; i < params.n_predict; i++) {
xuxzh1's avatar
update  
xuxzh1 committed
80
81
        auto next_token     = llama_sampler_sample(smpl, ctx, -1);
        auto next_token_str = common_token_to_piece(ctx, next_token);
xuxzh1's avatar
init  
xuxzh1 committed
82
83
84
85

        printf("%s", next_token_str.c_str());
        result0 += next_token_str;

xuxzh1's avatar
update  
xuxzh1 committed
86
87
88
89
        common_batch_clear(batch);
        common_batch_add(batch, next_token, n_past, {0}, true);

        if (llama_decode(ctx, batch)) {
xuxzh1's avatar
init  
xuxzh1 committed
90
            fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
xuxzh1's avatar
update  
xuxzh1 committed
91
            llama_batch_free(batch);
xuxzh1's avatar
init  
xuxzh1 committed
92
93
94
95
96
97
98
99
100
101
102
103
104
            llama_free(ctx);
            llama_free_model(model);
            return 1;
        }
        n_past += 1;
    }

    printf("\n\n");

    // free old context
    llama_free(ctx);

    // make new context
xuxzh1's avatar
update  
xuxzh1 committed
105
106
107
108
109
    auto * ctx2 = llama_new_context_with_model(model, common_context_params_to_llama(params));

    llama_sampler * smpl2 = llama_sampler_chain_init(sparams);

    llama_sampler_chain_add(smpl2, llama_sampler_init_dist(params.sampling.seed));
xuxzh1's avatar
init  
xuxzh1 committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    printf("\nsecond run: %s", params.prompt.c_str());

    // load state (rng, logits, embedding and kv_cache) from file
    {
        std::vector<uint8_t> state_mem;

        FILE * fp_read = fopen("dump_state.bin", "rb");
        fseek(fp_read, 0, SEEK_END);
        state_mem.resize(ftell(fp_read));
        fseek(fp_read, 0, SEEK_SET);
        const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
        fclose(fp_read);

        if (read != llama_state_set_data(ctx2, state_mem.data(), state_mem.size())) {
            fprintf(stderr, "\n%s : failed to read state\n", __func__);
            llama_free(ctx2);
            llama_free_model(model);
            return 1;
        }

        fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size());
    }

    // restore state (last tokens)
    n_past = n_past_saved;

    // second run
    for (auto i = 0; i < params.n_predict; i++) {
xuxzh1's avatar
update  
xuxzh1 committed
139
140
        auto next_token     = llama_sampler_sample(smpl2, ctx2, -1);
        auto next_token_str = common_token_to_piece(ctx2, next_token);
xuxzh1's avatar
init  
xuxzh1 committed
141
142
143
144

        printf("%s", next_token_str.c_str());
        result1 += next_token_str;

xuxzh1's avatar
update  
xuxzh1 committed
145
146
147
148
        common_batch_clear(batch);
        common_batch_add(batch, next_token, n_past, {0}, true);

        if (llama_decode(ctx2, batch)) {
xuxzh1's avatar
init  
xuxzh1 committed
149
            fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
xuxzh1's avatar
update  
xuxzh1 committed
150
            llama_batch_free(batch);
xuxzh1's avatar
init  
xuxzh1 committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
            llama_free(ctx2);
            llama_free_model(model);
            return 1;
        }
        n_past += 1;
    }

    printf("\n\n");

    llama_free(ctx2);

    if (result0 != result1) {
        fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
        return 1;
    }

    // make new context
xuxzh1's avatar
update  
xuxzh1 committed
168
169
170
171
172
    auto * ctx3 = llama_new_context_with_model(model, common_context_params_to_llama(params));

    llama_sampler * smpl3 = llama_sampler_chain_init(sparams);

    llama_sampler_chain_add(smpl3, llama_sampler_init_dist(params.sampling.seed));
xuxzh1's avatar
init  
xuxzh1 committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    printf("\nsingle seq run: %s", params.prompt.c_str());

    // load state (rng, logits, embedding and kv_cache) from file
    {
        std::vector<uint8_t> state_mem;

        FILE * fp_read = fopen("dump_state.bin", "rb");
        fseek(fp_read, 0, SEEK_END);
        state_mem.resize(ftell(fp_read));
        fseek(fp_read, 0, SEEK_SET);
        const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
        fclose(fp_read);

        if (read != llama_state_set_data(ctx3, state_mem.data(), state_mem.size())) {
            fprintf(stderr, "\n%s : failed to read state\n", __func__);
            llama_free(ctx3);
            llama_free_model(model);
            return 1;
        }

        fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size());
    }

    // restore state (last tokens)
    n_past = n_past_saved;

    // save seq 0 and load into seq 1
    {
        // save kv of seq 0
        std::vector<uint8_t> seq_store(llama_state_seq_get_size(ctx3, 0));
        const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), seq_store.size(), 0);
        if (ncopy != seq_store.size()) {
            fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size());
            llama_free(ctx3);
            llama_free_model(model);
            return 1;
        }
        fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);

        // erase whole kv
        llama_kv_cache_clear(ctx3);
        fprintf(stderr, "%s : kv cache cleared\n", __func__);

        // restore kv into seq 1
        const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), seq_store.size(), 1);
        if (nset != seq_store.size()) {
            fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size());
            llama_free(ctx3);
            llama_free_model(model);
            return 1;
        }
        fprintf(stderr, "%s : seq 1 restored, %zd bytes\n", __func__, nset);
    }

    // third run with seq 1 instead of 0
    for (auto i = 0; i < params.n_predict; i++) {
xuxzh1's avatar
update  
xuxzh1 committed
230
231
        auto next_token     = llama_sampler_sample(smpl3, ctx3, -1);
        auto next_token_str = common_token_to_piece(ctx3, next_token);
xuxzh1's avatar
init  
xuxzh1 committed
232
233
234
235

        printf("%s", next_token_str.c_str());
        result2 += next_token_str;

xuxzh1's avatar
update  
xuxzh1 committed
236
237
238
239
        common_batch_clear(batch);
        common_batch_add(batch, next_token, n_past, {1}, true);

        if (llama_decode(ctx3, batch)) {
xuxzh1's avatar
init  
xuxzh1 committed
240
            fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
xuxzh1's avatar
update  
xuxzh1 committed
241
            llama_batch_free(batch);
xuxzh1's avatar
init  
xuxzh1 committed
242
243
244
245
246
247
248
249
250
            llama_free(ctx3);
            llama_free_model(model);
            return 1;
        }
        n_past += 1;
    }

    printf("\n");

xuxzh1's avatar
update  
xuxzh1 committed
251
252
253
254
255
    llama_sampler_free(smpl);
    llama_sampler_free(smpl2);
    llama_sampler_free(smpl3);

    llama_batch_free(batch);
xuxzh1's avatar
init  
xuxzh1 committed
256
257
258
259
260
261
262
263
264
265
266
267
    llama_free(ctx3);
    llama_free_model(model);

    if (result0 != result2) {
        fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);
        return 1;
    }

    fprintf(stderr, "\n%s : success\n", __func__);

    return 0;
}