retrieval.cpp 9.97 KB
Newer Older
xuxzh1's avatar
update  
xuxzh1 committed
1
#include "arg.h"
xuxzh1's avatar
init  
xuxzh1 committed
2
#include "common.h"
xuxzh1's avatar
update  
xuxzh1 committed
3
#include "log.h"
xuxzh1's avatar
init  
xuxzh1 committed
4
5
6
7
#include "llama.h"

#include <algorithm>
#include <fstream>
xuxzh1's avatar
update  
xuxzh1 committed
8
#include <iostream> // TODO: remove me
xuxzh1's avatar
init  
xuxzh1 committed
9

xuxzh1's avatar
update  
xuxzh1 committed
10
11
12
13
static void print_usage(int, char ** argv) {
    LOG("\nexample usage:\n");
    LOG("\n    %s --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .\n", argv[0]);
    LOG("\n");
xuxzh1's avatar
init  
xuxzh1 committed
14
15
16
17
18
19
20
21
}

struct chunk {
    // filename
    std::string filename;
    // original file position
    size_t filepos;
    // original text data
xuxzh1's avatar
update  
xuxzh1 committed
22
    std::string textdata;
xuxzh1's avatar
init  
xuxzh1 committed
23
24
25
26
27
28
29
30
31
32
33
34
35
    // tokenized text data
    std::vector<llama_token> tokens;
    // embedding
    std::vector<float> embedding;
};

// chunk file data to chunks of size >= chunk_size
// chunk_separator is the separator between chunks
static std::vector<chunk> chunk_file(const std::string & filename, int chunk_size, const std::string & chunk_separator) {
    std::vector<chunk> chunks;
    std::ifstream f(filename.c_str());

    if (!f.is_open()) {
xuxzh1's avatar
update  
xuxzh1 committed
36
        LOG_ERR("could not open file %s\n", filename.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
37
38
39
40
41
42
        return chunks;
    }

    chunk current_chunk;
    char buffer[1024];
    int64_t filepos = 0;
xuxzh1's avatar
update  
xuxzh1 committed
43
    std::string current;
xuxzh1's avatar
init  
xuxzh1 committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    while (f.read(buffer, 1024)) {
        current += std::string(buffer, f.gcount());
        size_t pos;
        while ((pos = current.find(chunk_separator)) != std::string::npos) {
            current_chunk.textdata += current.substr(0, pos + chunk_separator.size());
            if ((int) current_chunk.textdata.size() > chunk_size) {
                // save chunk
                current_chunk.filepos = filepos;
                current_chunk.filename = filename;
                chunks.push_back(current_chunk);
                // update filepos
                filepos += (int) current_chunk.textdata.size();
                // reset current_chunk
                current_chunk = chunk();
            }
            current = current.substr(pos + chunk_separator.size());
        }

    }
    // add leftover data to last chunk
    if (current_chunk.textdata.size() > 0) {
        if (chunks.empty()) {
            current_chunk.filepos = filepos;
            current_chunk.filename = filename;
            chunks.push_back(current_chunk);
        } else {
            chunks.back().textdata += current_chunk.textdata;
        }
    }
    f.close();
    return chunks;
}

static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
    size_t n_tokens = tokens.size();
    for (size_t i = 0; i < n_tokens; i++) {
xuxzh1's avatar
update  
xuxzh1 committed
80
        common_batch_add(batch, tokens[i], i, { seq_id }, true);
xuxzh1's avatar
init  
xuxzh1 committed
81
82
83
84
85
86
87
88
    }
}

static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
    // clear previous kv_cache values (irrelevant for embeddings)
    llama_kv_cache_clear(ctx);

    // run model
xuxzh1's avatar
update  
xuxzh1 committed
89
    LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
xuxzh1's avatar
init  
xuxzh1 committed
90
    if (llama_decode(ctx, batch) < 0) {
xuxzh1's avatar
update  
xuxzh1 committed
91
        LOG_ERR("%s : failed to decode\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
92
93
94
95
96
97
98
99
100
101
102
103
    }

    for (int i = 0; i < batch.n_tokens; i++) {
        if (!batch.logits[i]) {
            continue;
        }

        // try to get sequence embeddings - supported only when pooling_type is not NONE
        const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
        if (embd == NULL) {
            embd = llama_get_embeddings_ith(ctx, i);
            if (embd == NULL) {
xuxzh1's avatar
update  
xuxzh1 committed
104
                LOG_ERR("%s: failed to get embeddings for token %d\n", __func__, i);
xuxzh1's avatar
init  
xuxzh1 committed
105
106
107
108
109
                continue;
            }
        }

        float * out = output + batch.seq_id[i][0] * n_embd;
xuxzh1's avatar
update  
xuxzh1 committed
110
        common_embd_normalize(embd, out, n_embd);
xuxzh1's avatar
init  
xuxzh1 committed
111
112
113
114
    }
}

int main(int argc, char ** argv) {
xuxzh1's avatar
update  
xuxzh1 committed
115
    common_params params;
xuxzh1's avatar
init  
xuxzh1 committed
116

xuxzh1's avatar
update  
xuxzh1 committed
117
    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_RETRIEVAL, print_usage)) {
xuxzh1's avatar
init  
xuxzh1 committed
118
119
120
        return 1;
    }

xuxzh1's avatar
update  
xuxzh1 committed
121
122
    common_init();

xuxzh1's avatar
init  
xuxzh1 committed
123
124
125
126
127
    // For BERT models, batch size must be equal to ubatch size
    params.n_ubatch = params.n_batch;
    params.embedding = true;

    if (params.chunk_size <= 0) {
xuxzh1's avatar
update  
xuxzh1 committed
128
        LOG_ERR("chunk_size must be positive\n");
xuxzh1's avatar
init  
xuxzh1 committed
129
130
131
        return 1;
    }
    if (params.context_files.empty()) {
xuxzh1's avatar
update  
xuxzh1 committed
132
        LOG_ERR("context_files must be specified\n");
xuxzh1's avatar
init  
xuxzh1 committed
133
134
135
        return 1;
    }

xuxzh1's avatar
update  
xuxzh1 committed
136
    LOG_INF("processing files:\n");
xuxzh1's avatar
init  
xuxzh1 committed
137
    for (auto & context_file : params.context_files) {
xuxzh1's avatar
update  
xuxzh1 committed
138
        LOG_INF("%s\n", context_file.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
139
140
141
142
143
144
145
    }

    std::vector<chunk> chunks;
    for (auto & context_file : params.context_files) {
        std::vector<chunk> file_chunk = chunk_file(context_file, params.chunk_size, params.chunk_separator);
        chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
    }
xuxzh1's avatar
update  
xuxzh1 committed
146
    LOG_INF("Number of chunks: %ld\n", chunks.size());
xuxzh1's avatar
init  
xuxzh1 committed
147
148
149
150
151

    llama_backend_init();
    llama_numa_init(params.numa);

    // load the model
xuxzh1's avatar
update  
xuxzh1 committed
152
    common_init_result llama_init = common_init_from_params(params);
xuxzh1's avatar
init  
xuxzh1 committed
153
154
155
156
157

    llama_model * model = llama_init.model;
    llama_context * ctx = llama_init.context;

    if (model == NULL) {
xuxzh1's avatar
update  
xuxzh1 committed
158
        LOG_ERR("%s: unable to load model\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
159
160
161
162
163
164
165
166
        return 1;
    }

    const int n_ctx_train = llama_n_ctx_train(model);
    const int n_ctx = llama_n_ctx(ctx);

    const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
    if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
xuxzh1's avatar
update  
xuxzh1 committed
167
        LOG_ERR("%s: pooling type NONE not supported\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
168
169
170
171
        return 1;
    }

    if (n_ctx > n_ctx_train) {
xuxzh1's avatar
update  
xuxzh1 committed
172
        LOG_WRN("%s: warning: model was trained on only %d context tokens (%d specified)\n",
xuxzh1's avatar
init  
xuxzh1 committed
173
174
175
176
177
                __func__, n_ctx_train, n_ctx);
    }

    // print system information
    {
xuxzh1's avatar
update  
xuxzh1 committed
178
179
        LOG_INF("\n");
        LOG_INF("%s\n", common_params_get_system_info(params).c_str());
xuxzh1's avatar
init  
xuxzh1 committed
180
181
182
183
184
185
186
187
    }

    // max batch size
    const uint64_t n_batch = params.n_batch;
    GGML_ASSERT(params.n_batch >= params.n_ctx);

    // tokenize the prompts and trim
    for (auto & chunk : chunks) {
xuxzh1's avatar
update  
xuxzh1 committed
188
        auto inp = common_tokenize(ctx, chunk.textdata, true, false);
xuxzh1's avatar
init  
xuxzh1 committed
189
        if (inp.size() > n_batch) {
xuxzh1's avatar
update  
xuxzh1 committed
190
            LOG_ERR("%s: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
xuxzh1's avatar
init  
xuxzh1 committed
191
192
193
194
195
196
197
198
199
200
201
202
203
                    __func__, (long long int) inp.size(), (long long int) n_batch);
            return 1;
        }
        // add eos if not present
        if (llama_token_eos(model) >= 0 && (inp.empty() || inp.back() != llama_token_eos(model))) {
            inp.push_back(llama_token_eos(model));
        }
        chunk.tokens = inp;
    }

    // tokenization stats
    if (params.verbose_prompt) {
        for (int i = 0; i < (int) chunks.size(); i++) {
xuxzh1's avatar
update  
xuxzh1 committed
204
205
            LOG_INF("%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
            LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
xuxzh1's avatar
init  
xuxzh1 committed
206
            for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
xuxzh1's avatar
update  
xuxzh1 committed
207
                LOG_INF("%6d -> '%s'\n", chunks[i].tokens[j], common_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
xuxzh1's avatar
init  
xuxzh1 committed
208
            }
xuxzh1's avatar
update  
xuxzh1 committed
209
            LOG_INF("\n\n");
xuxzh1's avatar
init  
xuxzh1 committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        }
    }

    // initialize batch
    const int n_chunks = chunks.size();
    struct llama_batch batch = llama_batch_init(n_batch, 0, 1);

    // allocate output
    const int n_embd = llama_n_embd(model);
    std::vector<float> embeddings(n_chunks * n_embd, 0);
    float * emb = embeddings.data();

    // break into batches
    int p = 0; // number of prompts processed already
    int s = 0; // number of prompts in current batch
    for (int k = 0; k < n_chunks; k++) {
        // clamp to n_batch tokens
        auto & inp = chunks[k].tokens;

        const uint64_t n_toks = inp.size();

        // encode if at capacity
        if (batch.n_tokens + n_toks > n_batch) {
            float * out = emb + p * n_embd;
            batch_decode(ctx, batch, out, s, n_embd);
xuxzh1's avatar
update  
xuxzh1 committed
235
            common_batch_clear(batch);
xuxzh1's avatar
init  
xuxzh1 committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
            p += s;
            s = 0;
        }

        // add to batch
        batch_add_seq(batch, inp, s);
        s += 1;
    }

    // final batch
    float * out = emb + p * n_embd;
    batch_decode(ctx, batch, out, s, n_embd);

    // save embeddings to chunks
    for (int i = 0; i < n_chunks; i++) {
        chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd);
        // clear tokens as they are no longer needed
        chunks[i].tokens.clear();
    }

xuxzh1's avatar
update  
xuxzh1 committed
256
257
    struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1);

xuxzh1's avatar
init  
xuxzh1 committed
258
259
260
    // start loop, receive query and return top k similar chunks based on cosine similarity
    std::string query;
    while (true) {
xuxzh1's avatar
update  
xuxzh1 committed
261
        LOG("Enter query: ");
xuxzh1's avatar
init  
xuxzh1 committed
262
        std::getline(std::cin, query);
xuxzh1's avatar
update  
xuxzh1 committed
263
        std::vector<int32_t> query_tokens = common_tokenize(ctx, query, true);
xuxzh1's avatar
init  
xuxzh1 committed
264
265
266
267
268
269

        batch_add_seq(query_batch, query_tokens, 0);

        std::vector<float> query_emb(n_embd, 0);
        batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);

xuxzh1's avatar
update  
xuxzh1 committed
270
        common_batch_clear(query_batch);
xuxzh1's avatar
init  
xuxzh1 committed
271
272
273
274
275

        // compute cosine similarities
        {
            std::vector<std::pair<int, float>> similarities;
            for (int i = 0; i < n_chunks; i++) {
xuxzh1's avatar
update  
xuxzh1 committed
276
                float sim = common_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
xuxzh1's avatar
init  
xuxzh1 committed
277
278
279
280
281
282
283
284
                similarities.push_back(std::make_pair(i, sim));
            }

            // sort similarities
            std::sort(similarities.begin(), similarities.end(), [](const std::pair<int, float> & a, const std::pair<int, float> & b) {
                return a.second > b.second;
            });

xuxzh1's avatar
update  
xuxzh1 committed
285
286
287
288
289
290
291
            LOG("Top %d similar chunks:\n", params.sampling.top_k);
            for (int i = 0; i < std::min(params.sampling.top_k, (int) chunks.size()); i++) {
                LOG("filename: %s\n", chunks[similarities[i].first].filename.c_str());
                LOG("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
                LOG("similarity: %f\n", similarities[i].second);
                LOG("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str());
                LOG("--------------------\n");
xuxzh1's avatar
init  
xuxzh1 committed
292
293
294
295
            }
        }
    }

xuxzh1's avatar
update  
xuxzh1 committed
296
297
298
    LOG("\n");
    llama_perf_context_print(ctx);

xuxzh1's avatar
init  
xuxzh1 committed
299
    // clean up
xuxzh1's avatar
update  
xuxzh1 committed
300
    llama_batch_free(query_batch);
xuxzh1's avatar
init  
xuxzh1 committed
301
302
303
304
    llama_free(ctx);
    llama_free_model(model);
    llama_backend_free();
}