perplexity.cpp 77.1 KB
Newer Older
xuxzh1's avatar
update  
xuxzh1 committed
1
#include "arg.h"
xuxzh1's avatar
init  
xuxzh1 committed
2
#include "common.h"
xuxzh1's avatar
update  
xuxzh1 committed
3
#include "log.h"
xuxzh1's avatar
init  
xuxzh1 committed
4
5
#include "llama.h"

xuxzh1's avatar
update  
xuxzh1 committed
6
7
8
#include <algorithm>
#include <array>
#include <atomic>
xuxzh1's avatar
init  
xuxzh1 committed
9
10
11
12
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
xuxzh1's avatar
update  
xuxzh1 committed
13
14
15
#include <fstream>
#include <mutex>
#include <random>
xuxzh1's avatar
init  
xuxzh1 committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#include <sstream>
#include <thread>
#include <vector>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

struct results_perplexity {
    std::vector<llama_token> tokens;
    double                   ppl_value;
    std::vector<float>       logits;
    std::vector<float>       probs;
};

struct results_log_softmax {
    double log_softmax;
    float  logit;
    float  prob;
};

static std::vector<float> softmax(const std::vector<float>& logits) {
    std::vector<float> probs(logits.size());
    float max_logit = logits[0];
    for (float v : logits) {
        max_logit = std::max(max_logit, v);
    }
    double sum_exp = 0.0;
    for (size_t i = 0; i < logits.size(); i++) {
        // Subtract the maximum logit value from the current logit value for numerical stability
        const float logit = logits[i] - max_logit;
        const float exp_logit = expf(logit);
        sum_exp += exp_logit;
        probs[i] = exp_logit;
    }
    for (size_t i = 0; i < probs.size(); i++) {
        probs[i] /= sum_exp;
    }
    return probs;
}

static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
    float max_logit = logits[0];
    for (int i = 1; i < n_vocab; ++i) {
        max_logit = std::max(max_logit, logits[i]);
    }
    double sum_exp = 0.0;
    for (int i = 0; i < n_vocab; ++i) {
        sum_exp += expf(logits[i] - max_logit);
    }
    return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
}

static inline int nearest_int(float fval) {
    //assert(fval <= 4194303.f);
    float val = fval + 12582912.f;
    int i; memcpy(&i, &val, sizeof(int));
    return (i & 0x007fffff) - 0x00400000;
}

static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) {
    float max_logit = logits[0];
    float min_logit = logits[0];
    for (int i = 1; i < n_vocab; ++i) {
        max_logit = std::max(max_logit, logits[i]);
        min_logit = std::min(min_logit, logits[i]);
    }
    min_logit = std::max(min_logit, max_logit - 16);
    double sum_exp = 0.0;
    for (int i = 0; i < n_vocab; ++i) {
        sum_exp += expf(logits[i] - max_logit);
    }
    const float log_sum_exp = log(sum_exp);
    const float min_log_prob = min_logit - max_logit - log_sum_exp;
    const float scale = (max_logit - min_logit)/65535.f;
    float * d = (float *)log_prob;
    d[0] = scale;
    d[1] = min_log_prob;
    log_prob += 4;
    if (scale) {
        const float inv_scale = 1/scale;
        for (int i = 0; i < n_vocab; ++i) {
            log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0;
        }
    } else {
        std::memset(log_prob, 0, n_vocab*sizeof(uint16_t));
    }
    return max_logit + log_sum_exp - logits[tok];
}

static void process_logits(
    int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
    double & nll, double & nll2, float * logit_history, float * prob_history
) {
    std::mutex mutex;
    int counter = 0;
    auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
        double local_nll  = 0;
        double local_nll2 = 0;
        while (true) {
            std::unique_lock<std::mutex> lock(mutex);
            int i = counter++;
            if (i >= n_token) {
                nll += local_nll; nll2 += local_nll2;
                break;
            }
            lock.unlock();
xuxzh1's avatar
update  
xuxzh1 committed
123
            const results_log_softmax results = log_softmax(n_vocab, logits + size_t(i)*n_vocab, tokens[i+1]);
xuxzh1's avatar
init  
xuxzh1 committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
            const double v = -results.log_softmax;
            local_nll += v;
            local_nll2 += v*v;

            logit_history[i] = results.logit;
            prob_history[i]  = results.prob;
        }
    };
    for (auto & w : workers) {
        w = std::thread(compute);
    }
    compute();
    for (auto & w : workers) {
        w.join();
    }
}

static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token,
        std::vector<std::thread> & workers, std::vector<uint16_t> & log_probs, double & nll, double & nll2) {
    std::mutex mutex;
    const int nv = 2*((n_vocab + 1)/2) + 4;
    int counter = 0;
    auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () {
        double local_nll  = 0;
        double local_nll2 = 0;
        while (true) {
            std::unique_lock<std::mutex> lock(mutex);
            int i = counter++;
            if (i >= n_token) {
                nll += local_nll; nll2 += local_nll2;
                break;
            }
            lock.unlock();
xuxzh1's avatar
update  
xuxzh1 committed
157
            const double v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, log_probs.data() + i*nv, tokens[i+1]);
xuxzh1's avatar
init  
xuxzh1 committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
            local_nll += v;
            local_nll2 += v*v;
        }
    };
    for (auto & w : workers) {
        w = std::thread(compute);
    }
    compute();
    for (auto & w : workers) {
        w.join();
    }
    out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t));
}

struct kl_divergence_result {
    double sum_nll          = 0.0;
    double sum_nll2         = 0.0;
    double sum_nll_base     = 0.0;
    double sum_nll_base2    = 0.0;
    double sum_nll_nll_base = 0.0;
    double sum_kld          = 0.0;
    double sum_kld2         = 0.0;
    double sum_p_diff       = 0.0;
    double sum_p_diff2      = 0.0;
    double sum_p_diff4      = 0.0;
    float  max_p_diff       = 0.0f;
    size_t n_same_top       = 0.0;
    size_t count            = 0.0;
};

static std::pair<double, float> log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
    float max_logit = logits[0];
    int imax = 0;
    for (int i = 1; i < n_vocab; ++i) {
        if (logits[i] > max_logit) {
            max_logit = logits[i];
            imax = i;
        }
    }
    double sum_exp = 0.0;
    for (int i = 0; i < n_vocab; ++i) {
        sum_exp += expf(logits[i] - max_logit);
    }
    const float log_sum_exp = log(sum_exp);
    const float * d = (const float *)base_log_prob;
    const float scale = d[0];
    const float min_log_prob = d[1];
    base_log_prob += 4;

    const float nll = max_logit + log_sum_exp - logits[tok];
    kld.sum_nll  += nll;
    kld.sum_nll2 += nll*nll;

    const float nll_base = -(scale*base_log_prob[tok] + min_log_prob);
    kld.sum_nll_base  += nll_base;
    kld.sum_nll_base2 += nll_base*nll_base;

    kld.sum_nll_nll_base += nll*nll_base;

    max_logit += log_sum_exp;
    double sum = 0;
    int imax_base = -1;
    float p_log_base_max = 0;
    for (int i = 0; i < n_vocab; ++i) {
        const float p_log_base = scale*base_log_prob[i] + min_log_prob;
        if (i == 0 || p_log_base > p_log_base_max) {
            p_log_base_max = p_log_base;
            imax_base = i;
        }
        if (p_log_base > -16.f) {
            const float p_base = expf(p_log_base);
            sum += p_base * (p_log_base - logits[i] + max_logit);
        }
    }
    kld.sum_kld  += sum;
    kld.sum_kld2 += sum*sum;
    ++kld.count;
xuxzh1's avatar
update  
xuxzh1 committed
235
236
237
    if (imax == imax_base) {
        ++kld.n_same_top;
    }
xuxzh1's avatar
init  
xuxzh1 committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

    const float p_base = expf(-nll_base);
    const float p = expf(-nll);
    const float p_diff = p - p_base;
    kld.sum_p_diff  += p_diff;
    const double p_diff2 = p_diff*p_diff;
    kld.sum_p_diff2 += p_diff2;
    kld.sum_p_diff4 += p_diff2*p_diff2;
    kld.max_p_diff = std::max(kld.max_p_diff, std::fabs(p_diff));

    return std::make_pair(sum, p_diff);
}

static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token,
        std::vector<std::thread> & workers, const std::vector<uint16_t> & base_log_probs, kl_divergence_result & kld,
        float * kld_values, float * p_diff_values) {
    std::mutex mutex;
    const int nv = 2*((n_vocab + 1)/2) + 4;
    int counter = 0;
    auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values, p_diff_values] () {
        kl_divergence_result local_kld;
        while (true) {
            std::unique_lock<std::mutex> lock(mutex);
            int i = counter++;
            if (i >= n_token) {
                kld.sum_nll          += local_kld.sum_nll;
                kld.sum_nll2         += local_kld.sum_nll2;
                kld.sum_nll_base     += local_kld.sum_nll_base;
                kld.sum_nll_base2    += local_kld.sum_nll_base2;
                kld.sum_nll_nll_base += local_kld.sum_nll_nll_base;
                kld.sum_kld          += local_kld.sum_kld;
                kld.sum_kld2         += local_kld.sum_kld2;
                kld.sum_p_diff       += local_kld.sum_p_diff;
                kld.sum_p_diff2      += local_kld.sum_p_diff2;
                kld.sum_p_diff4      += local_kld.sum_p_diff4;
                kld.n_same_top       += local_kld.n_same_top;
                kld.max_p_diff        = std::max(kld.max_p_diff, local_kld.max_p_diff);
                kld.count            += local_kld.count;
                break;
            }
            lock.unlock();
xuxzh1's avatar
update  
xuxzh1 committed
279
            std::pair<double, float> v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
xuxzh1's avatar
init  
xuxzh1 committed
280
281
282
283
284
285
286
287
288
289
290
291
292
            kld_values[i]    = (float)v.first;
            p_diff_values[i] = v.second;
        }
    };
    for (auto & w : workers) {
        w = std::thread(compute);
    }
    compute();
    for (auto & w : workers) {
        w.join();
    }
}

xuxzh1's avatar
update  
xuxzh1 committed
293
static results_perplexity perplexity_v2(llama_context * ctx, const common_params & params) {
xuxzh1's avatar
init  
xuxzh1 committed
294
295
296
297
298
    // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
    // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
    // Output: `perplexity: 13.5106 [114/114]`
    // BOS tokens will be added for each chunk before eval

xuxzh1's avatar
update  
xuxzh1 committed
299
300
    const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
    GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
xuxzh1's avatar
init  
xuxzh1 committed
301

xuxzh1's avatar
update  
xuxzh1 committed
302
    LOG_INF("%s: tokenizing the input ..\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
303

xuxzh1's avatar
update  
xuxzh1 committed
304
    std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
xuxzh1's avatar
init  
xuxzh1 committed
305
306
307
308

    const int n_ctx = llama_n_ctx(ctx);

    if (int(tokens.size()) < 2*n_ctx) {
xuxzh1's avatar
update  
xuxzh1 committed
309
        LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
xuxzh1's avatar
init  
xuxzh1 committed
310
                n_ctx);
xuxzh1's avatar
update  
xuxzh1 committed
311
        LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
xuxzh1's avatar
init  
xuxzh1 committed
312
313
314
315
316
317
318
319
320
321
        return {std::move(tokens), 0., {}, {}};
    }

    std::vector<float> logit_history;
    std::vector<float> prob_history;

    logit_history.resize(tokens.size());
    prob_history.resize(tokens.size());

    if (params.ppl_stride <= 0) {
xuxzh1's avatar
update  
xuxzh1 committed
322
        LOG_ERR("%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
xuxzh1's avatar
init  
xuxzh1 committed
323
324
325
326
327
        return {tokens, -1, logit_history, prob_history};
    }

    const int calc_chunk = n_ctx;

xuxzh1's avatar
update  
xuxzh1 committed
328
    LOG_INF("%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
xuxzh1's avatar
init  
xuxzh1 committed
329
330

    if (int(tokens.size()) <= calc_chunk) {
xuxzh1's avatar
update  
xuxzh1 committed
331
        LOG_ERR("%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
xuxzh1's avatar
init  
xuxzh1 committed
332
333
334
335
336
337
338
339
340
                tokens.size(), n_ctx, params.ppl_stride);
        return {tokens, -1, logit_history, prob_history};
    }

    const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1)  / params.ppl_stride;

    const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
    const int n_batch = params.n_batch;

xuxzh1's avatar
update  
xuxzh1 committed
341
342
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));

xuxzh1's avatar
init  
xuxzh1 committed
343
344
345
    int count = 0;
    double nll = 0.0;

xuxzh1's avatar
update  
xuxzh1 committed
346
    LOG_INF("%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
xuxzh1's avatar
init  
xuxzh1 committed
347
348
349
350
351
352

    for (int i = 0; i < n_chunk; ++i) {
        const int start =     i * params.ppl_stride;
        const int end   = start + calc_chunk;

        const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
xuxzh1's avatar
update  
xuxzh1 committed
353
        //LOG_DBG("%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
xuxzh1's avatar
init  
xuxzh1 committed
354
355
356
357
358
359
360
361

        std::vector<float> logits;

        const auto t_start = std::chrono::high_resolution_clock::now();

        // clear the KV cache
        llama_kv_cache_clear(ctx);

xuxzh1's avatar
update  
xuxzh1 committed
362
363
        llama_batch batch = llama_batch_init(n_batch, 0, 1);

xuxzh1's avatar
init  
xuxzh1 committed
364
365
366
367
        for (int j = 0; j < num_batches; ++j) {
            const int batch_start = start + j * n_batch;
            const int batch_size  = std::min(end - batch_start, n_batch);

xuxzh1's avatar
update  
xuxzh1 committed
368
369
370
371
372
373
374
375
376
            common_batch_clear(batch);
            for (int i = 0; i < batch_size; i++) {
                common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
            }

            //LOG_DBG("    Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
            if (llama_decode(ctx, batch)) {
                //LOG_ERR("%s : failed to eval\n", __func__);
                llama_batch_free(batch);
xuxzh1's avatar
init  
xuxzh1 committed
377
378
379
380
381
382
383
384
385
386
387
                return {tokens, -1, logit_history, prob_history};
            }

            // save original token and restore it after eval
            const auto token_org = tokens[batch_start];

            // add BOS token for the first batch of each chunk
            if (add_bos && j == 0) {
                tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
            }

xuxzh1's avatar
update  
xuxzh1 committed
388
389
            const auto * batch_logits = llama_get_logits(ctx);
            logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
xuxzh1's avatar
init  
xuxzh1 committed
390
391
392
393
394
395

            if (j == 0) {
                tokens[batch_start] = token_org;
            }
        }

xuxzh1's avatar
update  
xuxzh1 committed
396
397
        llama_batch_free(batch);

xuxzh1's avatar
init  
xuxzh1 committed
398
399
400
401
        const auto t_end = std::chrono::high_resolution_clock::now();

        if (i == 0) {
            const float t_total = std::chrono::duration<float>(t_end - t_start).count();
xuxzh1's avatar
update  
xuxzh1 committed
402
            LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
xuxzh1's avatar
init  
xuxzh1 committed
403
404
            int total_seconds = (int)(t_total * n_chunk);
            if (total_seconds >= 60*60) {
xuxzh1's avatar
update  
xuxzh1 committed
405
                LOG("%d hours ", total_seconds / (60*60));
xuxzh1's avatar
init  
xuxzh1 committed
406
407
                total_seconds = total_seconds % (60*60);
            }
xuxzh1's avatar
update  
xuxzh1 committed
408
            LOG("%.2f minutes\n", total_seconds / 60.0);
xuxzh1's avatar
init  
xuxzh1 committed
409
410
        }

xuxzh1's avatar
update  
xuxzh1 committed
411
        //LOG_DBG("%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
xuxzh1's avatar
init  
xuxzh1 committed
412
413
414
        for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
            // Calculate probability of next token, given the previous ones.
            const std::vector<float> tok_logits(
xuxzh1's avatar
update  
xuxzh1 committed
415
416
                logits.begin() + size_t(j + 0) * n_vocab,
                logits.begin() + size_t(j + 1) * n_vocab);
xuxzh1's avatar
init  
xuxzh1 committed
417
418
419
420
421
422
423
424
425
426

            const float prob = softmax(tok_logits)[tokens[start + j + 1]];
            logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
            prob_history[start + j + 1]  = prob;

            nll += -std::log(prob);
            ++count;
        }
        // perplexity is e^(average negative log-likelihood)
        if (params.ppl_output_type == 0) {
xuxzh1's avatar
update  
xuxzh1 committed
427
            LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
xuxzh1's avatar
init  
xuxzh1 committed
428
        } else {
xuxzh1's avatar
update  
xuxzh1 committed
429
            LOG("%8d  %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
xuxzh1's avatar
init  
xuxzh1 committed
430
431
        }
    }
xuxzh1's avatar
update  
xuxzh1 committed
432
    LOG("\n");
xuxzh1's avatar
init  
xuxzh1 committed
433
434
435
436

    return {tokens, std::exp(nll / count), logit_history, prob_history};
}

xuxzh1's avatar
update  
xuxzh1 committed
437
static results_perplexity perplexity(llama_context * ctx, const common_params & params, const int32_t n_ctx) {
xuxzh1's avatar
init  
xuxzh1 committed
438
439
440
441
442
443
444
445
446
    if (params.ppl_stride > 0) {
        return perplexity_v2(ctx, params);
    }

    // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
    // Run `./llama-perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
    // Output: `perplexity: 13.5106 [114/114]`
    // BOS tokens will be added for each chunk before eval

xuxzh1's avatar
update  
xuxzh1 committed
447
448
    const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
    GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
xuxzh1's avatar
init  
xuxzh1 committed
449
450
451
452
453

    std::ofstream logits_stream;
    if (!params.logits_file.empty()) {
        logits_stream.open(params.logits_file.c_str(), std::ios::binary);
        if (!logits_stream.is_open()) {
xuxzh1's avatar
update  
xuxzh1 committed
454
            LOG_ERR("%s: failed to open %s for writing\n", __func__, params.logits_file.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
455
456
            return {};
        }
xuxzh1's avatar
update  
xuxzh1 committed
457
        LOG_INF("%s: saving all logits to %s\n", __func__, params.logits_file.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
458
459
460
461
462
        logits_stream.write("_logits_", 8);
        logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx));
    }

    auto tim1 = std::chrono::high_resolution_clock::now();
xuxzh1's avatar
update  
xuxzh1 committed
463
    LOG_INF("%s: tokenizing the input ..\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
464

xuxzh1's avatar
update  
xuxzh1 committed
465
    std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
xuxzh1's avatar
init  
xuxzh1 committed
466
467

    auto tim2 = std::chrono::high_resolution_clock::now();
xuxzh1's avatar
update  
xuxzh1 committed
468
    LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
xuxzh1's avatar
init  
xuxzh1 committed
469
470

    if (int(tokens.size()) < 2*n_ctx) {
xuxzh1's avatar
update  
xuxzh1 committed
471
        LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
xuxzh1's avatar
init  
xuxzh1 committed
472
                n_ctx);
xuxzh1's avatar
update  
xuxzh1 committed
473
        LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
xuxzh1's avatar
init  
xuxzh1 committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
        return {std::move(tokens), 0., {}, {}};
    }

    std::vector<float> logit_history;
    logit_history.resize(tokens.size());

    std::vector<float> prob_history;
    prob_history.resize(tokens.size());

    const int n_chunk_max = tokens.size() / n_ctx;

    const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
    const int n_batch = params.n_batch;

xuxzh1's avatar
update  
xuxzh1 committed
488
489
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));

xuxzh1's avatar
init  
xuxzh1 committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    int count = 0;
    double nll = 0.0;
    double nll2 = 0.0;

    const int num_batches = (n_ctx + n_batch - 1) / n_batch;
    const int n_seq = std::max(1, n_batch / n_ctx);

    GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
    GGML_ASSERT(params.n_ctx == n_seq * n_ctx);

    llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);

    std::vector<float> logits;
    if (num_batches > 1) {
xuxzh1's avatar
update  
xuxzh1 committed
504
        logits.reserve(size_t(n_ctx) * n_vocab);
xuxzh1's avatar
init  
xuxzh1 committed
505
506
    }

xuxzh1's avatar
update  
xuxzh1 committed
507
    LOG_INF("%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
xuxzh1's avatar
init  
xuxzh1 committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

    std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);

    std::vector<uint16_t> log_probs;
    if (!params.logits_file.empty()) {
        logits_stream.write((const char *)&n_vocab, sizeof(n_vocab));
        logits_stream.write((const char *)&n_chunk, sizeof(n_chunk));
        logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0]));
        const int nv = 2*((n_vocab + 1)/2) + 4;
        log_probs.resize(n_ctx * nv);
    }

    // We get the logits for all the tokens in the context window (params.n_ctx)
    // from llama_eval above.  Now, based on https://huggingface.co/docs/transformers/perplexity,
    // calculate the perplexity over the last half of the window (so the model always has
    // some context to predict the token).
    //
    // We rely on the fact that attention in the forward pass only looks at previous
    // tokens here, so the logits returned for each token are an accurate representation
    // of what the model would have predicted at that point.
    //
    // Example, we have a context window of 512, we will compute perplexity for each of the
    // last 256 tokens.  Then, we split the input up into context window size chunks to
    // process the entire prompt.
    const int first = n_ctx/2;

    for (int i = 0; i < n_chunk; i += n_seq) {
        const int start =     i * n_ctx;
        const int end   = start + n_ctx;

        const int n_seq_batch = std::min(n_seq, n_chunk - i);

        const auto t_start = std::chrono::high_resolution_clock::now();

        // clear the KV cache
        llama_kv_cache_clear(ctx);

        for (int j = 0; j < num_batches; ++j) {
            const int batch_start = start + j * n_batch;
            const int batch_size  = std::min(end - batch_start, n_batch);

            int n_outputs = 0;

            batch.n_tokens = 0;
            for (int seq = 0; seq < n_seq_batch; seq++) {
                int seq_start = batch_start + seq*n_ctx;

                // save original token and restore it after eval
                const auto token_org = tokens[seq_start];

                // add BOS token for the first batch of each chunk
                if (add_bos && j == 0) {
                    tokens[seq_start] = llama_token_bos(llama_get_model(ctx));
                }

                for (int k = 0; k < batch_size; ++k) {
                    const int idx = seq*n_ctx + k;
                    batch.token   [idx]    = tokens[seq_start + k];
                    batch.pos     [idx]    = j*n_batch + k;
                    batch.n_seq_id[idx]    = 1;
                    batch.seq_id  [idx][0] = seq;
                    batch.logits  [idx]    = batch.pos[idx] >= first ? 1 : 0;

                    n_outputs += batch.logits[idx] != 0;
                }
                batch.n_tokens += batch_size;

                // restore the original token in case it was set to BOS
                tokens[seq_start] = token_org;
            }

            if (llama_decode(ctx, batch)) {
xuxzh1's avatar
update  
xuxzh1 committed
580
                LOG_INF("%s : failed to eval\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
581
582
583
584
585
                return {tokens, -1, logit_history, prob_history};
            }

            if (num_batches > 1 && n_outputs > 0) {
                const auto * batch_logits = llama_get_logits(ctx);
xuxzh1's avatar
update  
xuxzh1 committed
586
                logits.insert(logits.end(), batch_logits, batch_logits + size_t(n_outputs) * n_vocab);
xuxzh1's avatar
init  
xuxzh1 committed
587
588
589
590
591
592
593
594
            }
        }


        if (i == 0) {
            llama_synchronize(ctx);
            const auto t_end = std::chrono::high_resolution_clock::now();
            const float t_total = std::chrono::duration<float>(t_end - t_start).count();
xuxzh1's avatar
update  
xuxzh1 committed
595
            LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
xuxzh1's avatar
init  
xuxzh1 committed
596
597
            int total_seconds = (int)(t_total*n_chunk/n_seq);
            if (total_seconds >= 60*60) {
xuxzh1's avatar
update  
xuxzh1 committed
598
                LOG("%d hours ", total_seconds / (60*60));
xuxzh1's avatar
init  
xuxzh1 committed
599
600
                total_seconds = total_seconds % (60*60);
            }
xuxzh1's avatar
update  
xuxzh1 committed
601
            LOG("%.2f minutes\n", total_seconds / 60.0);
xuxzh1's avatar
init  
xuxzh1 committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
        }

        for (int seq = 0; seq < n_seq_batch; seq++) {
            const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first);

            llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
            if (!params.logits_file.empty()) {
                process_logits(logits_stream, n_vocab, all_logits,
                        tokens_data, n_ctx - 1 - first,
                        workers, log_probs, nll, nll2);
            } else {
                process_logits(n_vocab, all_logits,
                        tokens_data, n_ctx - 1 - first,
                        workers, nll, nll2,
                        logit_history.data() + start + seq*n_ctx + first,
                        prob_history.data()  + start + seq*n_ctx + first);
            }
            count += n_ctx - first - 1;

            // perplexity is e^(average negative log-likelihood)
            if (params.ppl_output_type == 0) {
xuxzh1's avatar
update  
xuxzh1 committed
623
                LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
xuxzh1's avatar
init  
xuxzh1 committed
624
625
626
            } else {
                double av = nll/count;
                double av2 = nll2/count - av*av;
xuxzh1's avatar
update  
xuxzh1 committed
627
628
629
630
                if (av2 > 0) {
                    av2 = sqrt(av2/(count-1));
                }
                LOG("%8d  %.4lf  %4lf  %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
xuxzh1's avatar
init  
xuxzh1 committed
631
632
633
634
635
            }
        }

        logits.clear();
    }
xuxzh1's avatar
update  
xuxzh1 committed
636
    LOG("\n");
xuxzh1's avatar
init  
xuxzh1 committed
637
638
639
640
641
642
643

    nll2 /= count;
    nll /= count;
    const double ppl = exp(nll);
    nll2 -= nll * nll;
    if (nll2 > 0) {
        nll2 = sqrt(nll2/(count-1));
xuxzh1's avatar
update  
xuxzh1 committed
644
        LOG_INF("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
xuxzh1's avatar
init  
xuxzh1 committed
645
    } else {
xuxzh1's avatar
update  
xuxzh1 committed
646
        LOG_ERR("Unexpected negative standard deviation of log(prob)\n");
xuxzh1's avatar
init  
xuxzh1 committed
647
648
649
650
651
652
653
    }

    llama_batch_free(batch);

    return {tokens, ppl, logit_history, prob_history};
}

xuxzh1's avatar
update  
xuxzh1 committed
654
static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int n_batch, int n_vocab) {
xuxzh1's avatar
init  
xuxzh1 committed
655
    int prev_outputs = 0;
xuxzh1's avatar
update  
xuxzh1 committed
656
657
    for (int i = 0; i < (int) batch.n_tokens; i += n_batch) {
        const int n_tokens = std::min<int>(n_batch, batch.n_tokens - i);
xuxzh1's avatar
init  
xuxzh1 committed
658
659
660
661
662
663
664
665
666
667
668
669
670

        llama_batch batch_view = {
            n_tokens,
            batch.token    + i,
            nullptr,
            batch.pos      + i,
            batch.n_seq_id + i,
            batch.seq_id   + i,
            batch.logits   + i,
        };

        const int ret = llama_decode(ctx, batch_view);
        if (ret != 0) {
xuxzh1's avatar
update  
xuxzh1 committed
671
            LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
xuxzh1's avatar
init  
xuxzh1 committed
672
673
674
675
676
677
678
679
            return false;
        }

        int n_outputs = 0;
        for (int i = 0; i < n_tokens; ++i) {
            n_outputs += batch_view.logits[i] != 0;
        }

xuxzh1's avatar
update  
xuxzh1 committed
680
        memcpy(batch_logits.data() + size_t(prev_outputs)*n_vocab, llama_get_logits(ctx), size_t(n_outputs)*n_vocab*sizeof(float));
xuxzh1's avatar
init  
xuxzh1 committed
681
682
683
684
685
686
687
688
689
690
691
692
693
694

        prev_outputs += n_outputs;
    }

    return true;
}

#define K_TOKEN_CHUNK 4

static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
        const std::vector<std::pair<size_t, llama_token>>& eval_pairs, std::vector<float>& eval_results) {
    if (eval_results.size() != eval_pairs.size()) {
        eval_results.resize(eval_pairs.size());
    }
xuxzh1's avatar
update  
xuxzh1 committed
695
696
697
    if (eval_pairs.empty()) {
        return;
    }
xuxzh1's avatar
init  
xuxzh1 committed
698
699
700
701
702
703
704

    size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size());

    std::atomic<int> counter(0);
    auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () {
        float local_logprobs[K_TOKEN_CHUNK];
        while (true) {
xuxzh1's avatar
update  
xuxzh1 committed
705
706
707
708
709
            const size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed);
            if (first >= eval_results.size()) {
                break;
            }
            const size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size());
xuxzh1's avatar
init  
xuxzh1 committed
710
            for (size_t i = first; i < last; ++i) {
xuxzh1's avatar
update  
xuxzh1 committed
711
                const auto * logits = batch_logits + eval_pairs[i].first * n_vocab;
xuxzh1's avatar
init  
xuxzh1 committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
                float max_logit = logits[0];
                for (int j = 1; j < n_vocab; ++j) {
                    max_logit = std::max(max_logit, logits[j]);
                }
                float sum_p = 0.f;
                for (int j = 0; j < n_vocab; ++j) {
                    sum_p += expf(logits[j] - max_logit);
                }
                local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p);
            }
            std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float));
        }
    };

    for (size_t it = 0; it < max_threads; ++it) {
        workers[it] = std::thread(compute);
    }
    for (size_t it = 0; it < max_threads; ++it) {
        workers[it].join();
    }
}

xuxzh1's avatar
update  
xuxzh1 committed
734
static void hellaswag_score(llama_context * ctx, const common_params & params) {
xuxzh1's avatar
init  
xuxzh1 committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
    // Calculates hellaswag score (acc_norm) from prompt
    //
    // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
    // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
    //
    // All 10042 tasks should be extracted to keep the results standardized like other implementations.
    //
    // Datafile layout:
    // ['??'] denotes json fields
    // 6 lines per task:
    // ['activity_label'] + ": " +['ctx']  - The first part of the query, the context
    // ['label'] - The index the best common sense ending aka gold ending
    // ['endings'][0] - Endings added to the first part of the query
    // ['endings'][1]
    // ['endings'][2]
    // ['endings'][3]

    std::vector<std::string> prompt_lines;
    std::istringstream strstream(params.prompt);
    std::string line;

    while (std::getline(strstream,line,'\n')) {
        prompt_lines.push_back(line);
    }

    if (prompt_lines.size() % 6 != 0) {
xuxzh1's avatar
update  
xuxzh1 committed
761
        LOG_ERR("%s : number of lines in prompt not a multiple of 6.\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
762
763
764
765
        return;
    }

    size_t hs_task_count = prompt_lines.size()/6;
xuxzh1's avatar
update  
xuxzh1 committed
766
    LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
xuxzh1's avatar
init  
xuxzh1 committed
767
768

    const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
xuxzh1's avatar
update  
xuxzh1 committed
769
    LOG_INF("================================= is_spm = %d\n", is_spm);
xuxzh1's avatar
init  
xuxzh1 committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

    // The tasks should be randomized so the score stabilizes quickly.
    bool randomize_tasks = true;

    // Number of tasks to use when computing the score
    if (params.hellaswag_tasks < hs_task_count) {
        hs_task_count = params.hellaswag_tasks;
    }

    // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
    std::mt19937 rng(1);

    // Dataholder for hellaswag tasks
    struct hs_data_t {
        std::string context;
        size_t gold_ending_idx;
        std::string ending[4];
        size_t ending_logprob_count[4];
        double ending_logprob[4];

        size_t i_logits;        // starting index of logits in the llama_batch
        size_t common_prefix;   // max number of initial tokens that are the same in all sentences
        size_t required_tokens; // needed number of tokens to evaluate all 4 endings
        std::vector<llama_token> seq_tokens[4];
    };

xuxzh1's avatar
update  
xuxzh1 committed
796
    LOG_INF("%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first")  );
xuxzh1's avatar
init  
xuxzh1 committed
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

    // Select and read data from prompt lines
    std::vector<hs_data_t> hs_data(hs_task_count);
    for (size_t i = 0; i < hs_task_count; i++) {
        size_t idx = i;

        auto & hs_cur = hs_data[i];

        // Select a random example of those left in the prompt
        if (randomize_tasks) {
            std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
            idx = dist(rng);
        }

        hs_cur.context = prompt_lines[idx*6];
        hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
        for (size_t j = 0; j < 4; j++) {
            hs_cur.ending[j] = prompt_lines[idx*6+2+j];
xuxzh1's avatar
update  
xuxzh1 committed
815
            hs_cur.seq_tokens[j] = common_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true);
xuxzh1's avatar
init  
xuxzh1 committed
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
        }

        // determine the common prefix of the endings
        hs_cur.common_prefix = 0;
        for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) {
            if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] ||
                hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] ||
                hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) {
                break;
            }
            hs_cur.common_prefix++;
        }
        hs_cur.required_tokens = hs_cur.common_prefix +
            hs_cur.seq_tokens[0].size() - hs_cur.common_prefix +
            hs_cur.seq_tokens[1].size() - hs_cur.common_prefix +
            hs_cur.seq_tokens[2].size() - hs_cur.common_prefix +
            hs_cur.seq_tokens[3].size() - hs_cur.common_prefix;

        //GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, true).size());

        // Delete the selected random example from the prompt
        if (randomize_tasks) {
            prompt_lines.erase( std::next(prompt_lines.begin(),idx*6)  , std::next(prompt_lines.begin(),idx*6+6) );
        }
    }

xuxzh1's avatar
update  
xuxzh1 committed
842
    LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
843

xuxzh1's avatar
update  
xuxzh1 committed
844
    LOG("\ntask\tacc_norm\n");
xuxzh1's avatar
init  
xuxzh1 committed
845
846
847
848
849
850

    double acc = 0.0f;

    const int n_ctx   = llama_n_ctx(ctx);
    const int n_batch = params.n_batch;

xuxzh1's avatar
update  
xuxzh1 committed
851
852
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));

xuxzh1's avatar
init  
xuxzh1 committed
853
854
855
856
857
858
859
    const int max_tasks_per_batch = 32;
    const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));

    llama_batch batch = llama_batch_init(n_ctx, 0, 4);

    std::vector<float> tok_logits(n_vocab);
    // TODO: this could be made smaller; it's currently the worst-case size
xuxzh1's avatar
update  
xuxzh1 committed
860
    std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
xuxzh1's avatar
init  
xuxzh1 committed
861
862
863
864
865
866
867
868
869
870
871

    std::vector<std::pair<size_t, llama_token>> eval_pairs;
    std::vector<float> eval_results;
    std::vector<std::thread> workers(std::thread::hardware_concurrency());

    for (size_t i0 = 0; i0 < hs_task_count; i0++) {
        int n_cur = 0;

        size_t i1 = i0;
        size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch

xuxzh1's avatar
update  
xuxzh1 committed
872
        common_batch_clear(batch);
xuxzh1's avatar
init  
xuxzh1 committed
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887

        // batch as much tasks as possible into the available context
        // each task has 4 unique sequence ids - one for each ending
        // the common prefix is shared among the 4 sequences to save tokens
        // we extract logits only from the last common token and from all ending tokens of each sequence
        while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) {
            auto & hs_cur = hs_data[i1];
            int n_logits = 0;

            const int s0 = 4*(i1 - i0);
            if (s0 + 4 > max_seq) {
                break;
            }

            for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
xuxzh1's avatar
update  
xuxzh1 committed
888
                common_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
xuxzh1's avatar
init  
xuxzh1 committed
889
890
891
892
893
894
895
896
897
            }
            batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
            n_logits += 1;

            for (int s = 0; s < 4; ++s) {
                const size_t seq_tokens_size = hs_cur.seq_tokens[s].size();
                // TODO: don't evaluate the last token of each sequence
                for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) {
                    const bool needs_logits = i < seq_tokens_size - 1;
xuxzh1's avatar
update  
xuxzh1 committed
898
                    common_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
xuxzh1's avatar
init  
xuxzh1 committed
899
900
901
902
903
904
905
906
907
908
909
910
911
912
                    n_logits += needs_logits;
                }
            }

            hs_cur.i_logits = i_logits;
            i_logits += n_logits;

            n_cur += hs_data[i1].required_tokens;
            if (++i1 == hs_task_count) {
                break;
            }
        }

        if (i0 == i1) {
xuxzh1's avatar
update  
xuxzh1 committed
913
            LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
xuxzh1's avatar
init  
xuxzh1 committed
914
915
916
917
918
919
920
            return;
        }

        llama_kv_cache_clear(ctx);

        // decode all tasks [i0, i1)
        if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
xuxzh1's avatar
update  
xuxzh1 committed
921
            LOG_ERR("%s: llama_decode() failed\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
            return;
        }

        // Compute log-probs in parallel
        // First we collect all tasks
        eval_pairs.clear();
        for (size_t i = i0; i < i1; ++i) {
            auto & hs_cur = hs_data[i];
            size_t li = 1; // skip the last logit of the common prefix (computed separately below)
            for (int s = 0; s < 4; ++s) {
                for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
                    eval_pairs.emplace_back(hs_cur.i_logits + li++, hs_cur.seq_tokens[s][j + 1]);
                }
            }
        }
        // Then we do the actual calculation
        compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);

        size_t ir = 0;

        // compute the logprobs for each ending of the decoded tasks
        for (size_t i = i0; i < i1; ++i) {
            auto & hs_cur = hs_data[i];

            // get the logits of the last token of the common prefix
xuxzh1's avatar
update  
xuxzh1 committed
947
            std::memcpy(tok_logits.data(), batch_logits.data() + hs_cur.i_logits*n_vocab, n_vocab*sizeof(float));
xuxzh1's avatar
init  
xuxzh1 committed
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970

            const auto first_probs = softmax(tok_logits);

            for (int s = 0; s < 4; ++s) {
                hs_cur.ending_logprob_count[s] = 1;
                hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]);
                for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
                    hs_cur.ending_logprob[s] += eval_results[ir++];
                    hs_cur.ending_logprob_count[s]++;
                }
                hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s];
            }

            // Find the ending with maximum logprob
            size_t ending_logprob_max_idx = 0;
            double ending_logprob_max_val = hs_cur.ending_logprob[0];
            for (size_t s = 1; s < 4; s++) {
                if (hs_cur.ending_logprob[s] > ending_logprob_max_val) {
                    ending_logprob_max_idx = s;
                    ending_logprob_max_val =  hs_cur.ending_logprob[s];
                }
            }

xuxzh1's avatar
update  
xuxzh1 committed
971
            //LOG("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx);
xuxzh1's avatar
init  
xuxzh1 committed
972
973
974
975
976
977
978

            // If the gold ending got the maximum logprobe add one accuracy point
            if (ending_logprob_max_idx == hs_cur.gold_ending_idx) {
                acc += 1.0;
            }

            // Print the accumulated accuracy mean x 100
xuxzh1's avatar
update  
xuxzh1 committed
979
            LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
xuxzh1's avatar
init  
xuxzh1 committed
980
981
982
983
984
985
986
        }

        i0 = i1 - 1;
    }

    llama_batch_free(batch);

xuxzh1's avatar
update  
xuxzh1 committed
987
    LOG("\n");
xuxzh1's avatar
init  
xuxzh1 committed
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
}

struct winogrande_entry {
    std::string first;
    std::string second;
    std::array<std::string, 2> choices;
    int answer;

    size_t i_logits;
    size_t common_prefix;
    size_t required_tokens;
    size_t n_base1; // number of tokens for context + choice 1
    size_t n_base2; // number of tokens for context + choice 2
    std::vector<llama_token> seq_tokens[2];
};

static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string & prompt) {
    std::vector<winogrande_entry> result;
    std::istringstream in(prompt);
    std::string line;
    std::array<int, 4> comma_pos;
    while (true) {
        std::getline(in, line);
        if (in.fail() || in.eof()) break;
        int ipos = 0;
        bool quote_open = false;
        for (int i = 0; i < int(line.size()); ++i) {
            if (!quote_open) {
                if (line[i] == ',') {
                    comma_pos[ipos++] = i;
                    if (ipos == 4) break;
                }
                else if (line[i] == '"') {
                    quote_open = true;
                }
            }
            else {
                if (line[i] == '"') {
                    quote_open = false;
                }
            }
        }
        if (ipos != 4) {
xuxzh1's avatar
update  
xuxzh1 committed
1031
            LOG_ERR("%s: failed to find comma separators in <%s>\n", __func__, line.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
            continue;
        }
        auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3)
                                                    : line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1);
        auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1);
        auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1);
        auto answer  = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1);
        auto index = line.substr(0, comma_pos[0]);
        int where = 0;
        for ( ; where < int(sentence.size()); ++where) {
            if (sentence[where] == '_') break;
        }
        if (where == int(sentence.size())) {
xuxzh1's avatar
update  
xuxzh1 committed
1045
            LOG_ERR("%s: no _ in <%s>\n", __func__, sentence.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
1046
1047
1048
1049
1050
            continue;
        }
        std::istringstream stream(answer.c_str());
        int i_answer; stream >> i_answer;
        if (stream.fail() || i_answer < 1 || i_answer > 2) {
xuxzh1's avatar
update  
xuxzh1 committed
1051
            LOG_ERR("%s: failed to parse answer <%s>\n", __func__, answer.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
            continue;
        }
        result.emplace_back();
        auto& wg = result.back();
        wg.first = sentence.substr(0, where);
        wg.second = sentence.substr(where + 1, sentence.size() - where - 1);
        wg.choices[0] = std::move(choice1);
        wg.choices[1] = std::move(choice2);
        wg.answer = i_answer;
    }
    return result;
}

/*
 * Evaluates the Winogrande score.
 * Uses a CSV containing task index, dentence, choice 1, choice 2, answer (1 or 2)
 * You can get one such dataset from e.g. https://huggingface.co/datasets/ikawrakow/winogrande-eval-for-llama.cpp
 * As an example, the 1st row in the above dataset is
 *
 *    0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2
 *
 */
xuxzh1's avatar
update  
xuxzh1 committed
1074
static void winogrande_score(llama_context * ctx, const common_params & params) {
xuxzh1's avatar
init  
xuxzh1 committed
1075
1076
1077
1078
1079

    constexpr int k_min_trailing_ctx = 3;

    auto data = load_winogrande_from_csv(params.prompt);
    if (data.empty()) {
xuxzh1's avatar
update  
xuxzh1 committed
1080
        LOG_ERR("%s: no tasks\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1081
1082
1083
        return;
    }

xuxzh1's avatar
update  
xuxzh1 committed
1084
    LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, data.size());
xuxzh1's avatar
init  
xuxzh1 committed
1085
1086

    if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) {
xuxzh1's avatar
update  
xuxzh1 committed
1087
        LOG_INF("%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks);
xuxzh1's avatar
init  
xuxzh1 committed
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
        std::mt19937 rng(1);
        std::vector<int> aux(data.size());
        for (int i = 0; i < int(data.size()); ++i) {
            aux[i] = i;
        }
        float scale = 1/(1.f + (float)rng.max());
        std::vector<winogrande_entry> selected;
        selected.resize(params.winogrande_tasks);
        for (int i = 0; i < int(params.winogrande_tasks); ++i) {
            int j = int(scale*rng()*aux.size());
            selected[i] = std::move(data[aux[j]]);
            aux[j] = aux.back();
            aux.pop_back();
        }
        data = std::move(selected);
    }

xuxzh1's avatar
update  
xuxzh1 committed
1105
    LOG_INF("%s : tokenizing selected tasks\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1106
1107

    for (auto & task : data) {
xuxzh1's avatar
update  
xuxzh1 committed
1108
1109
        task.seq_tokens[0] = common_tokenize(ctx, task.first + task.choices[0] + task.second, true);
        task.seq_tokens[1] = common_tokenize(ctx, task.first + task.choices[1] + task.second, true);
xuxzh1's avatar
init  
xuxzh1 committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

        task.common_prefix = 0;
        for (size_t k = 0; k < task.seq_tokens[0].size(); k++) {
            if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) {
                break;
            }
            task.common_prefix++;
        }

        // TODO: the last token of each of the sequences don't need to be evaluated
        task.required_tokens = task.common_prefix +
            task.seq_tokens[0].size() - task.common_prefix +
            task.seq_tokens[1].size() - task.common_prefix;

xuxzh1's avatar
update  
xuxzh1 committed
1124
1125
        task.n_base1 = common_tokenize(ctx, task.first + task.choices[0], true).size();
        task.n_base2 = common_tokenize(ctx, task.first + task.choices[1], true).size();
xuxzh1's avatar
init  
xuxzh1 committed
1126
1127
    }

xuxzh1's avatar
update  
xuxzh1 committed
1128
    LOG_INF("%s : calculating winogrande score over selected tasks.\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1129
1130
1131
1132

    const int n_ctx   = llama_n_ctx(ctx);
    const int n_batch = params.n_batch;

xuxzh1's avatar
update  
xuxzh1 committed
1133
1134
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));

xuxzh1's avatar
init  
xuxzh1 committed
1135
1136
1137
1138
1139
1140
1141
    const int max_tasks_per_batch = 128;
    const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));

    llama_batch batch = llama_batch_init(n_ctx, 0, 2);

    std::vector<float> tok_logits(n_vocab);
    // TODO: this could be made smaller; it's currently the worst-case size
xuxzh1's avatar
update  
xuxzh1 committed
1142
    std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
xuxzh1's avatar
init  
xuxzh1 committed
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

    std::vector<std::pair<size_t, llama_token>> eval_pairs;
    std::vector<float> eval_results;
    std::vector<std::thread> workers(std::thread::hardware_concurrency());

    int n_correct = 0;
    int n_done    = 0;

    for (size_t i0 = 0; i0 < data.size(); i0++) {
        int n_cur = 0;

        size_t i1 = i0;
        size_t i_logits = 0;

xuxzh1's avatar
update  
xuxzh1 committed
1157
        common_batch_clear(batch);
xuxzh1's avatar
init  
xuxzh1 committed
1158
1159
1160
1161
1162
1163
1164
1165
1166

        while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
            int n_logits = 0;
            const int s0 = 2*(i1 - i0);
            if (s0 + 2 > max_seq) {
                break;
            }

            for (size_t i = 0; i < data[i1].common_prefix; ++i) {
xuxzh1's avatar
update  
xuxzh1 committed
1167
                common_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
xuxzh1's avatar
init  
xuxzh1 committed
1168
1169
1170
1171
1172
1173
1174
            }
            batch.logits[batch.n_tokens - 1] = true;
            n_logits += 1;

            for (int s = 0; s < 2; ++s) {
                // TODO: end before the last token, no need to predict past the end of the sequences
                for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
xuxzh1's avatar
update  
xuxzh1 committed
1175
                    common_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
xuxzh1's avatar
init  
xuxzh1 committed
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
                    n_logits += 1;
                }
            }

            data[i1].i_logits = i_logits;
            i_logits += n_logits;

            n_cur += data[i1].required_tokens;
            if (++i1 == data.size()) {
                break;
            }
        }

        if (i0 == i1) {
xuxzh1's avatar
update  
xuxzh1 committed
1190
            LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
xuxzh1's avatar
init  
xuxzh1 committed
1191
1192
1193
1194
1195
1196
1197
            return;
        }

        llama_kv_cache_clear(ctx);

        // decode all tasks [i0, i1)
        if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
xuxzh1's avatar
update  
xuxzh1 committed
1198
            LOG_ERR("%s: llama_decode() failed\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
            return;
        }

        eval_pairs.clear();
        for (size_t i = i0; i < i1; ++i) {
            auto & task = data[i];

            const bool skip_choice =
                task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
                task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;

            const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
            const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
            size_t li = n_base1 - task.common_prefix;
            for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
                eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[0][j+1]);
            }
            const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
            const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
            // FIXME: this uses the wrong first logits when not skipping the choice word
            li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - task.common_prefix;
            for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
                eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[1][j+1]);
            }
        }
        compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);

        size_t ir = 0;
        for (size_t i = i0; i < i1; ++i) {
            auto & task = data[i];

            const bool skip_choice =
                task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
                task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;

            float score_1st = 0;
            const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
            const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
            for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
                score_1st += eval_results[ir++];
            }
            score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st);

            float score_2nd = 0;
            const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
            const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
            for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
                score_2nd += eval_results[ir++];
            }
            score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd);

            int result = score_1st > score_2nd ? 1 : 2;

            if (result == task.answer) {
                ++n_correct;
            }
            ++n_done;

            // print the accumulated accuracy mean x 100
xuxzh1's avatar
update  
xuxzh1 committed
1258
            LOG("%zu\t%.4lf\t%10.6f  %10.6f  %d  %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer);
xuxzh1's avatar
init  
xuxzh1 committed
1259
1260
1261
1262
1263
        }

        i0 = i1 - 1;
    }

xuxzh1's avatar
update  
xuxzh1 committed
1264
    LOG("\n");
xuxzh1's avatar
init  
xuxzh1 committed
1265
1266
1267
1268
1269

    if (n_done < 100) return;

    const float p = 1.f*n_correct/n_done;
    const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1));
xuxzh1's avatar
update  
xuxzh1 committed
1270
1271

    LOG_INF("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma);
xuxzh1's avatar
init  
xuxzh1 committed
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
}

static bool deserialize_string(std::istream & in, std::string & str) {
    uint32_t size;
    if (!in.read((char *)&size, sizeof(size)).fail()) {
        str.resize(size);
        if (!in.read((char *)&str[0], size).fail()) return true;
    }
    return false;
}

struct multiple_choice_answers {
    std::vector<std::string> answers;
    std::vector<int>         labels;
    bool deserialize(std::istream& in) {
        uint32_t n;
        in.read((char *)&n, sizeof(n));
        if (in.fail() || n > 100) return false; // 100 as max. number of answers should be good enough for any practical purpose
        answers.resize(n);
        labels.resize(n);
        for (auto& a : answers) {
            if (!deserialize_string(in, a)) return false;
        }
        in.read((char *)labels.data(), n*sizeof(int));
        return !in.fail();
    }
};

struct multiple_choice_task {
    std::string question;         // the question (or context that needs to be continued)
    multiple_choice_answers mc1;  // possible answers (continuations) with a single correct answer
    multiple_choice_answers mc2;  // possible answers (continuations) with multiple correct answers - not handled yet
    bool deserialize(std::istream& in) {
        if (!deserialize_string(in, question)) return false;
        return mc1.deserialize(in) && mc2.deserialize(in);
    }

    // For evaluation
    size_t i_logits;        // starting index of logits in the llama_batch
    size_t common_prefix;   // max number of initial tokens that are the same in all sentences
    size_t required_tokens; // needed number of tokens to evaluate all answers
    std::vector<std::vector<llama_token>> seq_tokens;
    std::vector<float> log_probs;
};

static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choice_task& task, bool log_error) {
    if (task.question.empty() || task.mc1.answers.empty()) {
        if (log_error) {
xuxzh1's avatar
update  
xuxzh1 committed
1320
            LOG_ERR("%s: found bad task with empty question and/or answers\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1321
1322
1323
1324
1325
1326
1327
        }
        return false;
    }
    task.seq_tokens.reserve(task.mc1.answers.size());
    for (auto& answer : task.mc1.answers) {
        if (answer.empty()) {
            if (log_error) {
xuxzh1's avatar
update  
xuxzh1 committed
1328
                LOG_ERR("%s: found empty answer\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1329
1330
1331
            }
            return false;
        }
xuxzh1's avatar
update  
xuxzh1 committed
1332
        task.seq_tokens.emplace_back(::common_tokenize(ctx, task.question + " " + answer, true));
xuxzh1's avatar
init  
xuxzh1 committed
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
    }
    auto min_len = task.seq_tokens.front().size();
    for (auto& seq : task.seq_tokens) {
        min_len = std::min(min_len, seq.size());
    }
    task.common_prefix = 0;
    for (size_t k = 0; k < min_len; ++k) {
        auto token = task.seq_tokens[0][k];
        bool all_same = true;
        for (size_t i = 1; i < task.seq_tokens.size(); ++i) {
            if (task.seq_tokens[i][k] != token) {
                all_same = false;
                break;
            }
        }
        if (!all_same) {
            break;
        }
        ++task.common_prefix;
    }
    task.required_tokens = task.common_prefix;
    for (auto& seq : task.seq_tokens) {
        task.required_tokens += seq.size() - task.common_prefix;
    }
    return true;
}

//
// Calculates score for multiple choice tasks with single correct answer from prompt.
// Commonly used LLM evaluation metrics of this type are
//   * ARC
//   * HellaSwag
//   * MMLU
//   * TruthfulQA
//
// Validation datasets for these 4 tests can be found at
//     https://huggingface.co/datasets/ikawrakow/validation-datasets-for-llama.cpp
// The data for these datasets was extracted from
//     git@hf.co:datasets/allenai/ai2_arc
//     https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
//     git@hf.co:datasets/Stevross/mmlu
//     https://huggingface.co/datasets/truthful_qa
//
xuxzh1's avatar
update  
xuxzh1 committed
1376
static void multiple_choice_score(llama_context * ctx, const common_params & params) {
xuxzh1's avatar
init  
xuxzh1 committed
1377
1378
1379
1380
1381

    std::istringstream strstream(params.prompt);
    uint32_t n_task;
    strstream.read((char *)&n_task, sizeof(n_task));
    if (strstream.fail() || n_task == 0) {
xuxzh1's avatar
update  
xuxzh1 committed
1382
        LOG_ERR("%s: no tasks\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1383
1384
        return;
    }
xuxzh1's avatar
update  
xuxzh1 committed
1385
    LOG_INF("%s: there are %u tasks in prompt\n", __func__, n_task);
xuxzh1's avatar
init  
xuxzh1 committed
1386
1387
1388
    std::vector<uint32_t> task_pos(n_task);
    strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t));
    if (strstream.fail()) {
xuxzh1's avatar
update  
xuxzh1 committed
1389
        LOG_ERR("%s: failed to read task positions from prompt\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1390
1391
1392
1393
1394
1395
1396
        return;
    }

    std::vector<multiple_choice_task> tasks;
    if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) {
        // Use all tasks
        tasks.resize(n_task);
xuxzh1's avatar
update  
xuxzh1 committed
1397
        LOG_INF("%s: reading tasks", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1398
1399
1400
1401
1402
        int n_dot = std::max((int) n_task/100, 1);
        int i = 0;
        for (auto& task : tasks) {
            ++i;
            if (!task.deserialize(strstream)) {
xuxzh1's avatar
update  
xuxzh1 committed
1403
                LOG_ERR("%s: failed to read task %d of %u\n", __func__, i, n_task);
xuxzh1's avatar
init  
xuxzh1 committed
1404
1405
                return;
            }
xuxzh1's avatar
update  
xuxzh1 committed
1406
            if (i%n_dot == 0) LOG(".");
xuxzh1's avatar
init  
xuxzh1 committed
1407
        }
xuxzh1's avatar
update  
xuxzh1 committed
1408
        LOG("done\n");
xuxzh1's avatar
init  
xuxzh1 committed
1409
1410
    }
    else {
xuxzh1's avatar
update  
xuxzh1 committed
1411
        LOG_INF("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task);
xuxzh1's avatar
init  
xuxzh1 committed
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
        std::mt19937 rng(1);
        std::vector<int> aux(n_task);
        for (uint32_t i = 0; i < n_task; ++i) aux[i] = i;
        float scale = 1.f/(1.f + (float)std::mt19937::max());
        tasks.resize(params.multiple_choice_tasks);
        for (auto& task : tasks) {
            int j = (int)(scale * rng() * aux.size());
            int idx = aux[j];
            aux[j] = aux.back();
            aux.pop_back();
            strstream.seekg(task_pos[idx], std::ios::beg);
            if (!task.deserialize(strstream)) {
xuxzh1's avatar
update  
xuxzh1 committed
1424
                LOG_ERR("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]);
xuxzh1's avatar
init  
xuxzh1 committed
1425
1426
1427
1428
1429
1430
                return;
            }
        }
        n_task = params.multiple_choice_tasks;
    }

xuxzh1's avatar
update  
xuxzh1 committed
1431
    LOG_INF("%s: preparing task data", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1432
    if (n_task > 500) {
xuxzh1's avatar
update  
xuxzh1 committed
1433
        LOG("...");
xuxzh1's avatar
init  
xuxzh1 committed
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
        std::atomic<int> counter(0);
        std::atomic<int> n_bad(0);
        auto prepare = [&counter, &n_bad, &tasks, ctx] () {
            int num_tasks = tasks.size();
            int n_bad_local = 0;
            while (true) {
                int first = counter.fetch_add(K_TOKEN_CHUNK);
                if (first >= num_tasks) {
                    if (n_bad_local > 0) n_bad += n_bad_local;
                    break;
                }
                int last = std::min(first + K_TOKEN_CHUNK, num_tasks);
                for (int i = first; i < last; ++i) {
                    if (!multiple_choice_prepare_one_task(ctx, tasks[i], false)) ++n_bad_local;
                }
            }
        };
        size_t max_thread = std::thread::hardware_concurrency();
        max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK);
        std::vector<std::thread> workers(max_thread-1);
        for (auto& w : workers) w = std::thread(prepare);
        prepare();
        for (auto& w : workers) w.join();
xuxzh1's avatar
update  
xuxzh1 committed
1457
        LOG("done\n");
xuxzh1's avatar
init  
xuxzh1 committed
1458
1459
        int nbad = n_bad;
        if (nbad > 0) {
xuxzh1's avatar
update  
xuxzh1 committed
1460
            LOG_ERR("%s: found %d malformed tasks\n", __func__, nbad);
xuxzh1's avatar
init  
xuxzh1 committed
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
            return;
        }
    } else {
        int n_dot = std::max((int) n_task/100, 1);
        int i_task = 0;
        for (auto& task : tasks) {
            ++i_task;
            if (!multiple_choice_prepare_one_task(ctx, task, true)) {
                return;
            }
            if (i_task%n_dot == 0) {
xuxzh1's avatar
update  
xuxzh1 committed
1472
                LOG(".");
xuxzh1's avatar
init  
xuxzh1 committed
1473
1474
            }
        }
xuxzh1's avatar
update  
xuxzh1 committed
1475
        LOG("done\n");
xuxzh1's avatar
init  
xuxzh1 committed
1476
1477
    }

xuxzh1's avatar
update  
xuxzh1 committed
1478
    LOG_INF("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size());
xuxzh1's avatar
init  
xuxzh1 committed
1479

xuxzh1's avatar
update  
xuxzh1 committed
1480
    LOG("\ntask\tacc_norm\n");
xuxzh1's avatar
init  
xuxzh1 committed
1481
1482
1483
1484

    const int n_ctx   = llama_n_ctx(ctx);
    const int n_batch = params.n_batch;

xuxzh1's avatar
update  
xuxzh1 committed
1485
1486
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));

xuxzh1's avatar
init  
xuxzh1 committed
1487
1488
1489
1490
1491
1492
    const int max_tasks_per_batch = 32;
    const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));

    llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);

    std::vector<float> tok_logits(n_vocab);
xuxzh1's avatar
update  
xuxzh1 committed
1493
    std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
xuxzh1's avatar
init  
xuxzh1 committed
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509

    std::vector<std::pair<size_t, llama_token>> eval_pairs;
    std::vector<float> eval_results;
    std::vector<std::thread> workers(std::thread::hardware_concurrency());
    std::vector<int> batch_indeces;

    int n_done = 0;
    int n_correct = 0;
    int n_tot_answers = 0;

    for (size_t i0 = 0; i0 < tasks.size(); i0++) {
        int n_cur = 0;

        size_t i1 = i0;
        size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch

xuxzh1's avatar
update  
xuxzh1 committed
1510
        common_batch_clear(batch);
xuxzh1's avatar
init  
xuxzh1 committed
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532

        // batch as much tasks as possible into the available context
        // each task has 4 unique sequence ids - one for each ending
        // the common prefix is shared among the 4 sequences to save tokens
        // we extract logits only from the last common token and from all ending tokens of each sequence
        int s0 = 0;
        while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) {
            auto& cur_task = tasks[i1];
            int n_logits = 0;

            int num_answers = cur_task.seq_tokens.size();
            if (s0 + num_answers > max_seq) {
                break;
            }

            if (int(batch_indeces.size()) != num_answers) {
                batch_indeces.resize(num_answers);
            }
            for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s;

            for (size_t i = 0; i < cur_task.common_prefix; ++i) {
                //llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
xuxzh1's avatar
update  
xuxzh1 committed
1533
                common_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
xuxzh1's avatar
init  
xuxzh1 committed
1534
1535
1536
1537
1538
1539
1540
1541
1542
            }
            batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
            n_logits += 1;

            for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
                const size_t seq_tokens_size = cur_task.seq_tokens[s].size();
                // TODO: don't evaluate the last token of each sequence
                for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) {
                    const bool needs_logits = i < seq_tokens_size - 1;
xuxzh1's avatar
update  
xuxzh1 committed
1543
                    common_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
xuxzh1's avatar
init  
xuxzh1 committed
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
                    n_logits += needs_logits;
                }
            }

            s0 += num_answers;

            cur_task.i_logits = i_logits;
            i_logits += n_logits;

            n_cur += cur_task.required_tokens;
            if (++i1 == tasks.size()) {
                break;
            }
        }

        if (i0 == i1) {
xuxzh1's avatar
update  
xuxzh1 committed
1560
            LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
xuxzh1's avatar
init  
xuxzh1 committed
1561
1562
1563
1564
1565
1566
1567
            return;
        }

        llama_kv_cache_clear(ctx);

        // decode all tasks [i0, i1)
        if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
xuxzh1's avatar
update  
xuxzh1 committed
1568
            LOG_ERR("%s: llama_decode() failed\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
            return;
        }

        // Compute log-probs in parallel
        // First we collect all tasks
        eval_pairs.clear();
        for (size_t i = i0; i < i1; ++i) {
            auto& cur_task = tasks[i];
            size_t li = 1; // skip the last logit of the common prefix (computed separately below)
            for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
                for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
                    eval_pairs.emplace_back(cur_task.i_logits + li++, cur_task.seq_tokens[s][j + 1]);
                }
            }
        }
        // Then we do the actual calculation
        compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);

        size_t ir = 0;

        // compute the logprobs for each ending of the decoded tasks
        for (size_t i = i0; i < i1; ++i) {
            auto & cur_task = tasks[i];
xuxzh1's avatar
update  
xuxzh1 committed
1592
            //LOG("==== Evaluating <%s> with correct answer ", cur_task.question.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
1593
1594
            //for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) {
            //    if (cur_task.mc1.labels[j] == 1) {
xuxzh1's avatar
update  
xuxzh1 committed
1595
            //        LOG("%d", j+1);
xuxzh1's avatar
init  
xuxzh1 committed
1596
1597
            //    }
            //}
xuxzh1's avatar
update  
xuxzh1 committed
1598
            //LOG("\n    common_prefix: %zu\n", cur_task.common_prefix);
xuxzh1's avatar
init  
xuxzh1 committed
1599
1600

            // get the logits of the last token of the common prefix
xuxzh1's avatar
update  
xuxzh1 committed
1601
            std::memcpy(tok_logits.data(), batch_logits.data() + cur_task.i_logits*n_vocab, n_vocab*sizeof(float));
xuxzh1's avatar
init  
xuxzh1 committed
1602
1603
1604
1605
1606
1607
1608
1609

            const auto first_probs = softmax(tok_logits);

            cur_task.log_probs.resize(cur_task.seq_tokens.size());
            for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
                size_t count = 1;
                float  log_prob  = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]);
                for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
xuxzh1's avatar
update  
xuxzh1 committed
1610
                    //LOG("        %zu  %g\n", ir, eval_results[ir]);
xuxzh1's avatar
init  
xuxzh1 committed
1611
1612
1613
1614
                    ++count;
                    log_prob += eval_results[ir++];
                }
                cur_task.log_probs[s] = log_prob / count;
xuxzh1's avatar
update  
xuxzh1 committed
1615
1616
                //LOG("        Final: %g\n", log_prob / count);
                //LOG("    <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count);
xuxzh1's avatar
init  
xuxzh1 committed
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
            }

            // Find the ending with maximum logprob
            size_t logprob_max_idx = 0;
            float  logprob_max_val = cur_task.log_probs[0];
            for (size_t s = 1; s < cur_task.log_probs.size(); s++) {
                if (cur_task.log_probs[s] > logprob_max_val) {
                    logprob_max_val = cur_task.log_probs[s];
                    logprob_max_idx = s;
                }
            }

            n_tot_answers += cur_task.log_probs.size();
            if (cur_task.mc1.labels[logprob_max_idx] == 1) {
                ++n_correct;
            }
            ++n_done;

            // Print the accumulated accuracy mean x 100
xuxzh1's avatar
update  
xuxzh1 committed
1636
            LOG("%d\t%.8lf\n", n_done, 100.*n_correct/n_done);
xuxzh1's avatar
init  
xuxzh1 committed
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
        }

        i0 = i1 - 1;
    }

    llama_batch_free(batch);

    if (n_done < 100 && (params.multiple_choice_tasks != 0 && params.multiple_choice_tasks < (size_t)n_task)) return;

    float p = 1.f*n_correct/n_done;
    float sigma = sqrt(p*(1-p)/(n_done-1));
xuxzh1's avatar
update  
xuxzh1 committed
1648
1649
    LOG("\n");
    LOG_INF("Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
xuxzh1's avatar
init  
xuxzh1 committed
1650
1651
    p = 1.f*n_done/n_tot_answers;
    sigma = sqrt(p*(1-p)/(n_done-1));
xuxzh1's avatar
update  
xuxzh1 committed
1652
    LOG_INF("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
xuxzh1's avatar
init  
xuxzh1 committed
1653

xuxzh1's avatar
update  
xuxzh1 committed
1654
    LOG_INF("\n");
xuxzh1's avatar
init  
xuxzh1 committed
1655
1656
}

xuxzh1's avatar
update  
xuxzh1 committed
1657
static void kl_divergence(llama_context * ctx, const common_params & params) {
xuxzh1's avatar
init  
xuxzh1 committed
1658
    if (params.logits_file.empty()) {
xuxzh1's avatar
update  
xuxzh1 committed
1659
        LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1660
1661
1662
1663
        return;
    }
    std::ifstream in(params.logits_file.c_str(), std::ios::binary);
    if (!in) {
xuxzh1's avatar
update  
xuxzh1 committed
1664
        LOG_ERR("%s: failed to open %s\n", __func__, params.logits_file.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
1665
1666
1667
1668
1669
1670
        return;
    }
    {
        char check[9]; check[8] = 0;
        in.read(check, 8);
        if (in.fail() || strncmp("_logits_", check, 8) != 0) {
xuxzh1's avatar
update  
xuxzh1 committed
1671
            LOG_ERR("%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
1672
1673
1674
1675
1676
1677
1678
            return;
        }
    }

    uint32_t n_ctx;
    in.read((char *)&n_ctx, sizeof(n_ctx));
    if (n_ctx > llama_n_ctx(ctx)) {
xuxzh1's avatar
update  
xuxzh1 committed
1679
        LOG_ERR("%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n",
xuxzh1's avatar
init  
xuxzh1 committed
1680
1681
1682
                __func__, params.logits_file.c_str(), n_ctx, params.n_ctx);
    }

xuxzh1's avatar
update  
xuxzh1 committed
1683
1684
    int n_vocab;
    int n_chunk;
xuxzh1's avatar
init  
xuxzh1 committed
1685
1686
1687
    in.read((char *)&n_vocab, sizeof(n_vocab));
    in.read((char *)&n_chunk, sizeof(n_chunk));
    if (in.fail()) {
xuxzh1's avatar
update  
xuxzh1 committed
1688
        LOG_ERR("%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
1689
1690
1691
        return;
    }
    if (n_vocab != llama_n_vocab(llama_get_model(ctx))) {
xuxzh1's avatar
update  
xuxzh1 committed
1692
        LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
xuxzh1's avatar
init  
xuxzh1 committed
1693
1694
    }

xuxzh1's avatar
update  
xuxzh1 committed
1695
    std::vector<llama_token> tokens(size_t(n_ctx) * n_chunk);
xuxzh1's avatar
init  
xuxzh1 committed
1696
    if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) {
xuxzh1's avatar
update  
xuxzh1 committed
1697
        LOG_ERR("%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
1698
1699
1700
1701
1702
1703
        return;
    }

    const int n_batch = params.n_batch;
    const int num_batches = (n_ctx + n_batch - 1)/n_batch;
    const int nv = 2*((n_vocab + 1)/2) + 4;
xuxzh1's avatar
update  
xuxzh1 committed
1704
1705
    const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
    GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
xuxzh1's avatar
init  
xuxzh1 committed
1706
1707
1708
1709
1710
1711

    std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
    std::vector<float>    kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
    std::vector<float> p_diff_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
    std::vector<float> logits;
    if (num_batches > 1) {
xuxzh1's avatar
update  
xuxzh1 committed
1712
        logits.reserve(size_t(n_ctx) * n_vocab);
xuxzh1's avatar
init  
xuxzh1 committed
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
    }

    std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);

    auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) {
        if (count < 1) {
            return std::make_pair(0., 0.);
        }
        double f = sum/count;
        double df = sum2/count - f*f;
        df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.;
        return std::make_pair(f, df);
    };
    auto covariance = [] (double suma, double sumb, double sumab, size_t count) {
        if (count < 10) {
            return 0.0;
        }
        double var = sumab/count - (suma/count)*(sumb/count);
        var /= count - 1;
        return var;
    };

    kl_divergence_result kld;
    auto    kld_ptr =    kld_values.data();
    auto p_diff_ptr = p_diff_values.data();

    for (int i = 0; i < n_chunk; ++i) {
        const int start =     i * n_ctx;
        const int end   = start + n_ctx;

        const auto t_start = std::chrono::high_resolution_clock::now();

        if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) {
xuxzh1's avatar
update  
xuxzh1 committed
1746
            LOG_ERR("%s: failed reading log-probs for chunk %d\n", __func__, i);
xuxzh1's avatar
init  
xuxzh1 committed
1747
1748
1749
1750
1751
1752
            return;
        }

        // clear the KV cache
        llama_kv_cache_clear(ctx);

xuxzh1's avatar
update  
xuxzh1 committed
1753
1754
        llama_batch batch = llama_batch_init(n_batch, 0, 1);

xuxzh1's avatar
init  
xuxzh1 committed
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
        for (int j = 0; j < num_batches; ++j) {
            const int batch_start = start + j * n_batch;
            const int batch_size  = std::min(end - batch_start, n_batch);

            // save original token and restore it after eval
            const auto token_org = tokens[batch_start];

            // add BOS token for the first batch of each chunk
            if (add_bos && j == 0) {
                tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
            }

xuxzh1's avatar
update  
xuxzh1 committed
1767
1768
1769
1770
1771
1772
1773
1774
            common_batch_clear(batch);
            for (int i = 0; i < batch_size; i++) {
                common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
            }

            if (llama_decode(ctx, batch)) {
                LOG_ERR("%s : failed to eval\n", __func__);
                llama_batch_free(batch);
xuxzh1's avatar
init  
xuxzh1 committed
1775
1776
1777
1778
1779
1780
1781
1782
                return;
            }

            // restore the original token in case it was set to BOS
            tokens[batch_start] = token_org;

            if (num_batches > 1) {
                const auto * batch_logits = llama_get_logits(ctx);
xuxzh1's avatar
update  
xuxzh1 committed
1783
                logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
xuxzh1's avatar
init  
xuxzh1 committed
1784
1785
1786
            }
        }

xuxzh1's avatar
update  
xuxzh1 committed
1787
1788
        llama_batch_free(batch);

xuxzh1's avatar
init  
xuxzh1 committed
1789
1790
1791
1792
        const auto t_end = std::chrono::high_resolution_clock::now();

        if (i == 0) {
            const float t_total = std::chrono::duration<float>(t_end - t_start).count();
xuxzh1's avatar
update  
xuxzh1 committed
1793
            LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
xuxzh1's avatar
init  
xuxzh1 committed
1794
1795
            int total_seconds = (int)(t_total * n_chunk);
            if (total_seconds >= 60*60) {
xuxzh1's avatar
update  
xuxzh1 committed
1796
                LOG("%d hours ", total_seconds / (60*60));
xuxzh1's avatar
init  
xuxzh1 committed
1797
1798
                total_seconds = total_seconds % (60*60);
            }
xuxzh1's avatar
update  
xuxzh1 committed
1799
            LOG("%.2f minutes\n", total_seconds / 60.0);
xuxzh1's avatar
init  
xuxzh1 committed
1800
        }
xuxzh1's avatar
update  
xuxzh1 committed
1801
1802
        LOG("\n");
        LOG("chunk             PPL               ln(PPL(Q)/PPL(base))          KL Divergence              Δp RMS            Same top p\n");
xuxzh1's avatar
init  
xuxzh1 committed
1803
1804
1805

        const int first = n_ctx/2;
        const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
xuxzh1's avatar
update  
xuxzh1 committed
1806
        process_logits(n_vocab, all_logits + size_t(first)*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
xuxzh1's avatar
init  
xuxzh1 committed
1807
1808
1809
1810
                workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr);
        p_diff_ptr += n_ctx - 1 - first;
        kld_ptr    += n_ctx - 1 - first;

xuxzh1's avatar
update  
xuxzh1 committed
1811
        LOG("%4d", i+1);
xuxzh1's avatar
init  
xuxzh1 committed
1812
1813
1814
1815

        auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
        const double ppl_val = exp(log_ppl.first);
        const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
xuxzh1's avatar
update  
xuxzh1 committed
1816
        LOG("    %9.4lf ± %9.4lf", ppl_val, ppl_unc);
xuxzh1's avatar
init  
xuxzh1 committed
1817
1818
1819
1820
1821

        auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
        const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
        const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
        const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
xuxzh1's avatar
update  
xuxzh1 committed
1822
        LOG("    %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc);
xuxzh1's avatar
init  
xuxzh1 committed
1823
1824

        auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
xuxzh1's avatar
update  
xuxzh1 committed
1825
        LOG("    %10.5lf ± %10.5lf", kl_div.first, kl_div.second);
xuxzh1's avatar
init  
xuxzh1 committed
1826
1827
1828
1829

        auto p_diff_mse   = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
        const double p_diff_rms_val = sqrt(p_diff_mse.first);
        const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
xuxzh1's avatar
update  
xuxzh1 committed
1830
        LOG("    %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
xuxzh1's avatar
init  
xuxzh1 committed
1831
1832
1833

        double p_top_val = 1.*kld.n_same_top/kld.count;
        double p_top_unc = sqrt(p_top_val*(1 - p_top_val)/(kld.count - 1));
xuxzh1's avatar
update  
xuxzh1 committed
1834
        LOG("    %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc);
xuxzh1's avatar
init  
xuxzh1 committed
1835

xuxzh1's avatar
update  
xuxzh1 committed
1836
        LOG("\n");
xuxzh1's avatar
init  
xuxzh1 committed
1837
1838
1839

        logits.clear();
    }
xuxzh1's avatar
update  
xuxzh1 committed
1840
    LOG("\n");
xuxzh1's avatar
init  
xuxzh1 committed
1841
1842
1843
1844
1845
1846

    if (kld.count < 100) return; // we do not wish to do statistics on so few values

    std::sort(kld_values.begin(), kld_values.end());
    std::sort(p_diff_values.begin(), p_diff_values.end());

xuxzh1's avatar
update  
xuxzh1 committed
1847
    LOG("====== Perplexity statistics ======\n");
xuxzh1's avatar
init  
xuxzh1 committed
1848
1849
1850
1851

    auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
    const double ppl_val = exp(log_ppl.first);
    const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
xuxzh1's avatar
update  
xuxzh1 committed
1852
    LOG("Mean PPL(Q)                   : %10.6lf ± %10.6lf\n", ppl_val, ppl_unc);
xuxzh1's avatar
init  
xuxzh1 committed
1853
1854
1855
1856

    auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
    const double ppl_base_val = exp(log_ppl_base.first);
    const double ppl_base_unc = ppl_base_val * log_ppl_base.second; // ppl_base_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_base.second ** 2 )
xuxzh1's avatar
update  
xuxzh1 committed
1857
    LOG("Mean PPL(base)                : %10.6lf ± %10.6lf\n", ppl_base_val, ppl_base_unc);
xuxzh1's avatar
init  
xuxzh1 committed
1858
1859

    const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
xuxzh1's avatar
update  
xuxzh1 committed
1860
    // LOG("Cov(ln(PPL(Q)), ln(PPL(base))): %10.6lf\n", log_ppl_cov);
xuxzh1's avatar
init  
xuxzh1 committed
1861
    const double log_ppl_cor = log_ppl_cov / (log_ppl.second*log_ppl_base.second);
xuxzh1's avatar
update  
xuxzh1 committed
1862
    LOG("Cor(ln(PPL(Q)), ln(PPL(base))): %6.2lf%%\n", 100.0*log_ppl_cor);
xuxzh1's avatar
init  
xuxzh1 committed
1863
1864
1865

    const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
    const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
xuxzh1's avatar
update  
xuxzh1 committed
1866
    LOG("Mean ln(PPL(Q)/PPL(base))     : %10.6lf ± %10.6lf\n", log_ppl_ratio_val, log_ppl_ratio_unc);
xuxzh1's avatar
init  
xuxzh1 committed
1867
1868
1869

    const double ppl_ratio_val = exp(log_ppl_ratio_val);
    const double ppl_ratio_unc = ppl_ratio_val * log_ppl_ratio_unc; // ppl_ratio_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_ratio.second ** 2 )
xuxzh1's avatar
update  
xuxzh1 committed
1870
    LOG("Mean PPL(Q)/PPL(base)         : %10.6lf ± %10.6lf\n", ppl_ratio_val, ppl_ratio_unc);
xuxzh1's avatar
init  
xuxzh1 committed
1871
1872
1873
1874

    const double ppl_cov = ppl_val * ppl_base_val * log_ppl_cov;
    const double ppl_diff_val = ppl_val - ppl_base_val;
    const double ppl_diff_unc = sqrt(ppl_unc*ppl_unc + ppl_base_unc*ppl_base_unc - 2.0*ppl_cov);
xuxzh1's avatar
update  
xuxzh1 committed
1875
    LOG("Mean PPL(Q)-PPL(base)         : %10.6lf ± %10.6lf\n", ppl_diff_val, ppl_diff_unc);
xuxzh1's avatar
init  
xuxzh1 committed
1876

xuxzh1's avatar
update  
xuxzh1 committed
1877
    LOG("\n");
xuxzh1's avatar
init  
xuxzh1 committed
1878

xuxzh1's avatar
update  
xuxzh1 committed
1879
    LOG("====== KL divergence statistics ======\n");
xuxzh1's avatar
init  
xuxzh1 committed
1880
    auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
xuxzh1's avatar
update  
xuxzh1 committed
1881
    LOG("Mean    KLD: %10.6lf ± %10.6lf\n", kl_div.first, kl_div.second);
xuxzh1's avatar
init  
xuxzh1 committed
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
    auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1])
                                               : kld_values[kld_values.size()/2];

    auto percentile = [] (std::vector<float> values, float fraction) {
        if (fraction <= 0) return values.front();
        if (fraction >= 1) return values.back();
        float p = fraction*(values.size() - 1);
        size_t ip = size_t(p); p -= ip;
        return (1 - p)*values[ip] + p*values[std::min(ip+1, values.size()-1)];
    };

xuxzh1's avatar
update  
xuxzh1 committed
1893
1894
1895
1896
1897
1898
1899
1900
1901
    LOG("Maximum KLD: %10.6f\n", kld_values.back());
    LOG("99.9%%   KLD: %10.6f\n", percentile(kld_values, 0.999f));
    LOG("99.0%%   KLD: %10.6f\n", percentile(kld_values, 0.990f));
    LOG("99.0%%   KLD: %10.6f\n", percentile(kld_values, 0.990f));
    LOG("Median  KLD: %10.6f\n", kld_median);
    LOG("10.0%%   KLD: %10.6f\n", percentile(kld_values, 0.100f));
    LOG(" 5.0%%   KLD: %10.6f\n", percentile(kld_values, 0.050f));
    LOG(" 1.0%%   KLD: %10.6f\n", percentile(kld_values, 0.010f));
    LOG("Minimum KLD: %10.6f\n", kld_values.front());
xuxzh1's avatar
init  
xuxzh1 committed
1902

xuxzh1's avatar
update  
xuxzh1 committed
1903
    LOG("\n");
xuxzh1's avatar
init  
xuxzh1 committed
1904

xuxzh1's avatar
update  
xuxzh1 committed
1905
    LOG("====== Token probability statistics ======\n");
xuxzh1's avatar
init  
xuxzh1 committed
1906
1907

    auto p_diff = mean_and_uncertainty(kld.sum_p_diff, kld.sum_p_diff2, kld.count);
xuxzh1's avatar
update  
xuxzh1 committed
1908
    LOG("Mean    Δp: %6.3lf ± %5.3lf %%\n",  100.0*p_diff.first, 100.0*p_diff.second);
xuxzh1's avatar
init  
xuxzh1 committed
1909
1910
1911
1912

    auto p_diff_median = p_diff_values.size()%2 == 0 ? 0.5f*(p_diff_values[p_diff_values.size()/2] + p_diff_values[p_diff_values.size()/2-1])
                                               : p_diff_values[p_diff_values.size()/2];

xuxzh1's avatar
update  
xuxzh1 committed
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
    LOG("Maximum Δp: %6.3lf%%\n",  100.0*p_diff_values.back());
    LOG("99.9%%   Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.999f));
    LOG("99.0%%   Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.990f));
    LOG("95.0%%   Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.950f));
    LOG("90.0%%   Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.900f));
    LOG("75.0%%   Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.750f));
    LOG("Median  Δp: %6.3lf%%\n",  100.0*p_diff_median);
    LOG("25.0%%   Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.250f));
    LOG("10.0%%   Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.100f));
    LOG(" 5.0%%   Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.050f));
    LOG(" 1.0%%   Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.010f));
    LOG(" 0.1%%   Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.001f));
    LOG("Minimum Δp: %6.3lf%%\n",  100.0*p_diff_values.front());
xuxzh1's avatar
init  
xuxzh1 committed
1926
1927

    auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
xuxzh1's avatar
update  
xuxzh1 committed
1928
    // LOG("MSE Δp    : %10.6lf ± %10.6lf\n", p_diff_mse.first, p_diff_mse.second);
xuxzh1's avatar
init  
xuxzh1 committed
1929
1930
1931

    const double p_diff_rms_val = sqrt(p_diff_mse.first);
    const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
xuxzh1's avatar
update  
xuxzh1 committed
1932
    LOG("RMS Δp    : %6.3lf ± %5.3lf %%\n", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
xuxzh1's avatar
init  
xuxzh1 committed
1933
1934

    const double same_top_p = 1.0*kld.n_same_top/kld.count;
xuxzh1's avatar
update  
xuxzh1 committed
1935
    LOG("Same top p: %6.3lf ± %5.3lf %%\n", 100.0*same_top_p, 100.0*sqrt(same_top_p*(1.0 - same_top_p)/(kld.count - 1)));
xuxzh1's avatar
init  
xuxzh1 committed
1936
1937
1938
}

int main(int argc, char ** argv) {
xuxzh1's avatar
update  
xuxzh1 committed
1939
    common_params params;
xuxzh1's avatar
init  
xuxzh1 committed
1940
1941
1942

    params.n_ctx = 512;
    params.logits_all = true;
xuxzh1's avatar
update  
xuxzh1 committed
1943
    params.escape = false;
xuxzh1's avatar
init  
xuxzh1 committed
1944

xuxzh1's avatar
update  
xuxzh1 committed
1945
    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
xuxzh1's avatar
init  
xuxzh1 committed
1946
1947
1948
        return 1;
    }

xuxzh1's avatar
update  
xuxzh1 committed
1949
1950
    common_init();

xuxzh1's avatar
init  
xuxzh1 committed
1951
1952
1953
    const int32_t n_ctx = params.n_ctx;

    if (n_ctx <= 0) {
xuxzh1's avatar
update  
xuxzh1 committed
1954
        LOG_ERR("%s: perplexity tool requires '--ctx-size' > 0\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
        return 1;
    }

    const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence;

    if (ppl) {
        const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
        const int32_t n_kv = n_seq * n_ctx;

        params.n_parallel = n_seq;
        params.n_ctx      = n_kv;

        params.n_batch = std::min(params.n_batch, n_kv);
    } else {
        params.n_batch = std::min(params.n_batch, params.n_ctx);
        if (params.kl_divergence) {
            params.n_parallel = 1;
        } else {
            // ensure there's at least enough seq_ids for HellaSwag
            params.n_parallel = std::max(4, params.n_parallel);
        }
    }

    if (params.ppl_stride > 0) {
xuxzh1's avatar
update  
xuxzh1 committed
1979
        LOG_INF("Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
xuxzh1's avatar
init  
xuxzh1 committed
1980
1981
1982
1983
1984
1985
1986
1987
                params.n_ctx, params.n_ctx + params.ppl_stride/2);
        params.n_ctx += params.ppl_stride/2;
    }

    llama_backend_init();
    llama_numa_init(params.numa);

    // load the model and apply lora adapter, if any
xuxzh1's avatar
update  
xuxzh1 committed
1988
    common_init_result llama_init = common_init_from_params(params);
xuxzh1's avatar
init  
xuxzh1 committed
1989
1990
1991
1992

    llama_model * model = llama_init.model;
    llama_context * ctx = llama_init.context;
    if (model == NULL) {
xuxzh1's avatar
update  
xuxzh1 committed
1993
        LOG_ERR("%s: unable to load model\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
1994
1995
1996
1997
1998
1999
        return 1;
    }

    const int n_ctx_train = llama_n_ctx_train(model);

    if (params.n_ctx > n_ctx_train) {
xuxzh1's avatar
update  
xuxzh1 committed
2000
        LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
xuxzh1's avatar
init  
xuxzh1 committed
2001
2002
2003
2004
2005
                __func__, n_ctx_train, params.n_ctx);
    }

    // print system information
    {
xuxzh1's avatar
update  
xuxzh1 committed
2006
2007
        LOG_INF("\n");
        LOG_INF("%s\n", common_params_get_system_info(params).c_str());
xuxzh1's avatar
init  
xuxzh1 committed
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
    }

    struct results_perplexity results;
    if (params.hellaswag) {
        hellaswag_score(ctx, params);
    } else if (params.winogrande) {
        winogrande_score(ctx, params);
    } else if (params.multiple_choice) {
        multiple_choice_score(ctx, params);
    } else if (params.kl_divergence) {
        kl_divergence(ctx, params);
    } else {
        results = perplexity(ctx, params, n_ctx);
    }

xuxzh1's avatar
update  
xuxzh1 committed
2023
2024
    LOG("\n");
    llama_perf_context_print(ctx);
xuxzh1's avatar
init  
xuxzh1 committed
2025
2026
2027
2028
2029
2030
2031
2032

    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

    return 0;
}