lookahead.cpp 15.8 KB
Newer Older
xuxzh1's avatar
update  
xuxzh1 committed
1
#include "arg.h"
xuxzh1's avatar
init  
xuxzh1 committed
2
#include "common.h"
xuxzh1's avatar
update  
xuxzh1 committed
3
4
#include "sampling.h"
#include "log.h"
xuxzh1's avatar
init  
xuxzh1 committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include "llama.h"

#include <cstdio>
#include <string>
#include <vector>

struct ngram_data {
    bool active = false;

    llama_seq_id seq_id = -1;

    std::vector<int> i_batch;

    std::vector<llama_token> tokens;
};

// n-gram container
struct ngram_container {
    ngram_container(int n_vocab, int N, int G) {
        cnt.resize(n_vocab);
        head.resize(n_vocab);
        tokens.resize(n_vocab * G * (N - 1));
    }

    int n_total = 0;

    std::vector<int> cnt;
    std::vector<int> head;

    // [n_vocab][G][N - 1]
    // for each token of the vocab, keep a ring-buffer of capacity G of n-grams of size N - 1
    std::vector<llama_token> tokens;
};

int main(int argc, char ** argv) {
xuxzh1's avatar
update  
xuxzh1 committed
40
    common_params params;
xuxzh1's avatar
init  
xuxzh1 committed
41

xuxzh1's avatar
update  
xuxzh1 committed
42
    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
xuxzh1's avatar
init  
xuxzh1 committed
43
44
45
        return 1;
    }

xuxzh1's avatar
update  
xuxzh1 committed
46
47
    common_init();

xuxzh1's avatar
init  
xuxzh1 committed
48
49
50
51
52
53
54
55
56
57
58
    const int W = 15; // lookahead window
    const int N = 5;  // n-gram size
    const int G = 15; // max verification n-grams

    const bool dump_kv_cache = params.dump_kv_cache;

    // init llama.cpp
    llama_backend_init();
    llama_numa_init(params.numa);

    // load the target model
xuxzh1's avatar
update  
xuxzh1 committed
59
    common_init_result llama_init = common_init_from_params(params);
xuxzh1's avatar
init  
xuxzh1 committed
60
61
62
63
64
65
66
67

    llama_model * model = llama_init.model;
    llama_context * ctx = llama_init.context;

    // Tokenize the prompt
    std::vector<llama_token> inp;
    std::vector<llama_token> all;

xuxzh1's avatar
update  
xuxzh1 committed
68
    inp = common_tokenize(ctx, params.prompt, true, true);
xuxzh1's avatar
init  
xuxzh1 committed
69
70
71
72
73
74
    all = inp;

    const int max_context_size     = llama_n_ctx(ctx);
    const int max_tokens_list_size = max_context_size - 4;

    if ((int) inp.size() > max_tokens_list_size) {
xuxzh1's avatar
update  
xuxzh1 committed
75
        LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
xuxzh1's avatar
init  
xuxzh1 committed
76
77
78
        return 1;
    }

xuxzh1's avatar
update  
xuxzh1 committed
79
    LOG("\n\n");
xuxzh1's avatar
init  
xuxzh1 committed
80
81

    for (auto id : inp) {
xuxzh1's avatar
update  
xuxzh1 committed
82
        LOG("%s", common_token_to_piece(ctx, id).c_str());
xuxzh1's avatar
init  
xuxzh1 committed
83
84
85
86
87
88
89
90
91
    }

    fflush(stderr);

    const int n_input = inp.size();

    const auto t_enc_start = ggml_time_us();

    // eval the prompt
xuxzh1's avatar
update  
xuxzh1 committed
92
93
    llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1));
    llama_decode(ctx, llama_batch_get_one(&inp.back(),           1));
xuxzh1's avatar
init  
xuxzh1 committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    for (int s = 1; s < W + G + 1; ++s) {
        llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
    }

    const auto t_enc_end = ggml_time_us();

    int n_predict = 0;
    int n_accept  = 0;

    int n_past = inp.size();

    llama_token id = 0;

    // used to determine end of generation
    bool has_eos = false;

    // for each decoded batch, we have at most W + G + 1 distinct sequences:
    // seq_id == 0           : the current input token
    // seq_id [1, W]         : tokens from the past N - 1 Jacobi iterations
    // seq_id [W + 1, W + G] : verification n-grams
    llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);

    // target model sampling context
xuxzh1's avatar
update  
xuxzh1 committed
118
    struct common_sampler * smpl = common_sampler_init(model, params.sampling);
xuxzh1's avatar
init  
xuxzh1 committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

    // verification n-grams
    std::vector<ngram_data> ngrams_cur(G);

    // tokens for the past N - 1 Jacobi iterations
    std::vector<llama_token> tokens_j_prev(W);
    std::vector<std::vector<llama_token>> tokens_j(N - 1);
    for (int j = 0; j < N - 1; j++) {
        tokens_j[j].resize(W);

        for (int i = 0; i < W; i++) {
            // there are different ways to init these tokens
            if (0) {
                // initialize randomly from the prompt tokens
                tokens_j[j][i] = all[1 + rand() % (all.size() - 1)];
            } else {
                // initialize with a sequence of increasing numbers
                tokens_j[j][i] = 100 + i;
            }
        }
    }

    std::vector<llama_seq_id> seq_id_look;

    // the input token belongs both to all sequences
    std::vector<llama_seq_id> seq_id_all(W + G + 1);
    for (int i = 0; i < W + G + 1; i++) {
        seq_id_all[i] = i;
    }

    // here we keep adding new n-grams as we go
    ngram_container ngrams_observed(llama_n_vocab(model), N, G);

    // debug
    struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1);

    const auto t_dec_start = ggml_time_us();

    // sample first token
    {
xuxzh1's avatar
update  
xuxzh1 committed
159
        id = common_sampler_sample(smpl, ctx, 0);
xuxzh1's avatar
init  
xuxzh1 committed
160

xuxzh1's avatar
update  
xuxzh1 committed
161
        common_sampler_accept(smpl, id, true);
xuxzh1's avatar
init  
xuxzh1 committed
162
163

        {
xuxzh1's avatar
update  
xuxzh1 committed
164
            const std::string token_str = common_token_to_piece(ctx, id);
xuxzh1's avatar
init  
xuxzh1 committed
165

xuxzh1's avatar
update  
xuxzh1 committed
166
            LOG("%s", token_str.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
167
168
169
170
171
172
173
174
            fflush(stdout);
        }
    }

    while (true) {
        // debug
        if (dump_kv_cache) {
            llama_kv_cache_view_update(ctx, &kvc_view);
xuxzh1's avatar
update  
xuxzh1 committed
175
            common_kv_cache_dump_view_seqs(kvc_view, 40);
xuxzh1's avatar
init  
xuxzh1 committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        }

        // build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
        //
        // Example for W = 5, N = 4, G = 2:
        // (I = input, L = lookahead, V = verification)
        //
        // Batch:  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
        // T:        -2 -2 -2 -2 -1 -1 -1 -1 -1  0  0  0  0  0  0
        // Info:   I  L  L  L  L  L  L  L  L  L  L  L  L  L  L  V  V  V  V  V  V
        // Pos:    0  1  2  3  4  1  2  3  4  5  2  3  4  5  6  1  2  3  1  2  3   (+ n_past)
        // Logits: 1  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1
        // ---------------------------------------------------------------------
        // Seq:    0
        //         1              1              1
        //         2  2              2              2
        //         3  3  3              3              3
        //         4  4  4  4              4              4
        //         5  5  5  5  5              5              5
        //         6                                            6  6  6
        //         7                                                     7  7  7
        // ---------------------------------------------------------------------
        //                                       |  |  |  |  |  |  |  |  |  |  |
        //                                       V  V  V  V  V  |  |  |  |  |  |
        //                                         j_tokens     |  |  |  |  |  |
        //                                                      V  V  V  V  V  V
        //                                                             id
        {
xuxzh1's avatar
update  
xuxzh1 committed
204
            common_batch_clear(batch);
xuxzh1's avatar
init  
xuxzh1 committed
205
206

            // current token - first token of the first level
xuxzh1's avatar
update  
xuxzh1 committed
207
            common_batch_add(batch, id, n_past, seq_id_all, true);
xuxzh1's avatar
init  
xuxzh1 committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

            // verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation
            {
                const int g_cur = ngrams_observed.cnt[id];

                ngrams_cur.resize(g_cur);
                for (int g = 0; g < g_cur; g++) {
                    ngrams_cur[g].active = true;
                    ngrams_cur[g].tokens.resize(N);
                    ngrams_cur[g].i_batch.resize(N);
                    ngrams_cur[g].seq_id = W + 1 + g;
                    ngrams_cur[g].i_batch[0] = 0;
                    ngrams_cur[g].tokens [0] = id;
                }

                for (int j = 0; j < N - 1; j++) {
                    for (int g = 0; g < g_cur; g++) {
                        const int idx = id*(N - 1)*G + g*(N - 1);

                        const llama_token t = ngrams_observed.tokens[idx + j];

                        ngrams_cur[g].tokens [j + 1] = t;
                        ngrams_cur[g].i_batch[j + 1] = batch.n_tokens;

xuxzh1's avatar
update  
xuxzh1 committed
232
                        common_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
xuxzh1's avatar
init  
xuxzh1 committed
233
234
235
236
237
238
239
240
241
242
243
                    }
                }
            }

            // fill the remaining W - 1 tokens for the first level
            for (int i = 1; i < W; i++) {
                seq_id_look.resize(W - i);
                for (int j = 0; j < W - i; j++) {
                    seq_id_look[j] = i + j + 1;
                }

xuxzh1's avatar
update  
xuxzh1 committed
244
                common_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
xuxzh1's avatar
init  
xuxzh1 committed
245
246
247
248
249
            }

            // fill the rest of the levels
            for (int j = 1; j < N - 1; j++) {
                for (int i = 0; i < W; i++) {
xuxzh1's avatar
update  
xuxzh1 committed
250
                    common_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
xuxzh1's avatar
init  
xuxzh1 committed
251
252
253
254
255
                }
            }
        }

        if (llama_decode(ctx, batch) != 0) {
xuxzh1's avatar
update  
xuxzh1 committed
256
            LOG_ERR("\n\n%s: llama_decode failed - increase KV cache size\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
            return 1;
        }

        int seq_id_best = 0;

        for (int v = 0; v < N; ++v) {
            int i_batch = 0;

            // if no active ngrams are left, it means the sampled token does not pass the verification
            if (v > 0) {
                for (int g = 0; g < (int) ngrams_cur.size(); g++) {
                    if (ngrams_cur[g].active) {
                        i_batch = ngrams_cur[g].i_batch[v];
                        seq_id_best = ngrams_cur[g].seq_id;

                        ++n_accept;
                        break;
                    }
                }

                // no more matches -> create a new batch
                if (i_batch == 0) {
                    break;
                }
            }

            // sample the next token
xuxzh1's avatar
update  
xuxzh1 committed
284
            id = common_sampler_sample(smpl, ctx, i_batch);
xuxzh1's avatar
init  
xuxzh1 committed
285

xuxzh1's avatar
update  
xuxzh1 committed
286
            common_sampler_accept(smpl, id, true);
xuxzh1's avatar
init  
xuxzh1 committed
287
288
289

            // print
            {
xuxzh1's avatar
update  
xuxzh1 committed
290
                const std::string token_str = common_token_to_piece(ctx, id);
xuxzh1's avatar
init  
xuxzh1 committed
291
292

                if (v == 0) {
xuxzh1's avatar
update  
xuxzh1 committed
293
                    LOG("%s", token_str.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
294
295
                } else {
                    // print light cyan
xuxzh1's avatar
update  
xuxzh1 committed
296
                    LOG("\033[0;96m%s\033[0m", token_str.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
                }
                fflush(stdout);

                if (llama_token_is_eog(model, id)) {
                    has_eos = true;
                }

                all.push_back(id);
            }

            ++n_predict;
            ++n_past;

            if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
                break;
            }

            // verify across active n-grams
            for (int g = 0; g < (int) ngrams_cur.size(); g++) {
                if (ngrams_cur[g].active) {
                    if (v == N - 1) {
                        ngrams_cur[g].active = false;
                    } else {
                        if (id != ngrams_cur[g].tokens[v + 1]) {
                            ngrams_cur[g].active = false;
                        }
                    }
                }
            }

            // print known n-grams starting with token id (debug)
            if (0 && v == 0) {
                if (ngrams_observed.cnt[id] > 0) {
xuxzh1's avatar
update  
xuxzh1 committed
330
                    LOG("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], common_token_to_piece(ctx, id).c_str());
xuxzh1's avatar
init  
xuxzh1 committed
331
332
333
                }

                for (int i = 0; i < ngrams_observed.cnt[id]; i++) {
xuxzh1's avatar
update  
xuxzh1 committed
334
                    LOG("   - ngram %2d: ", i);
xuxzh1's avatar
init  
xuxzh1 committed
335
336
337
338

                    const int idx = id*(N - 1)*G + i*(N - 1);

                    for (int j = 0; j < N - 1; j++) {
xuxzh1's avatar
update  
xuxzh1 committed
339
                        const std::string token_str = common_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
xuxzh1's avatar
init  
xuxzh1 committed
340

xuxzh1's avatar
update  
xuxzh1 committed
341
                        LOG("%s", token_str.c_str());
xuxzh1's avatar
init  
xuxzh1 committed
342
343
                    }

xuxzh1's avatar
update  
xuxzh1 committed
344
                    LOG("\n");
xuxzh1's avatar
init  
xuxzh1 committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
                }
            }

            // update lookahead tokens
            {
                for (int i = 0; i < W; i++) {
                    tokens_j_prev[i] = tokens_j[0][i];
                }

                for (int j = 0; j < N - 2; j++) {
                    tokens_j[j] = tokens_j[j + 1];
                }

                if (v == 0) {
                    // sample from the last level
                    for (int i = 0; i < W; i++) {
xuxzh1's avatar
update  
xuxzh1 committed
361
                        tokens_j[N - 2][i] = common_sampler_sample(smpl, ctx, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
xuxzh1's avatar
init  
xuxzh1 committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
                    }
                } else {
                    for (int i = 0; i < W; i++) {
                        // there are different ways to init these tokens
                        if (0) {
                            // random init
                            tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)];
                        } else {
                            // init from the previous level
                            tokens_j[N - 2][i] = tokens_j[0][i];
                        }
                    }
                }
            }

            // update observed ngrams
            if (v == 0) {
                // the first token of the n-gram is determined by the index in the container so it is not stored
                std::vector<llama_token> ngram(N - 1);

                // n-gram generation
                // ref: https://github.com/hao-ai-lab/LookaheadDecoding/issues/14#issuecomment-1826198518
                for (int f = 0; f < W; ++f) {
                    const int ft = tokens_j_prev[f]; // first token of the n-gram

                    for (int j = 0; j < N - 1; ++j) {
                        ngram[j] = tokens_j[j][f];
                    }

                    // filter-out repeating n-grams
                    {
                        bool is_unique = true;

                        for (int k = 0; k < ngrams_observed.cnt[ft]; ++k) {
                            const int idx = ft*(N - 1)*G + k*(N - 1);

                            bool is_match = true;
                            for (int j = 0; j < N - 1; ++j) {
                                if (ngrams_observed.tokens[idx + j] != ngram[j]) {
                                    is_match = false;
                                    break;
                                }
                            }

                            if (is_match) {
                                is_unique = false;
                                break;
                            }
                        }

                        if (!is_unique) {
                            continue;
                        }
                    }

                    const int head = ngrams_observed.head[ft];
                    const int idx  = ft*(N - 1)*G + head*(N - 1);

                    for (int i = 0; i < N - 1; i++) {
                        ngrams_observed.tokens[idx + i] = ngram[i];
                    }

                    ngrams_observed.cnt[ft]  = std::min(G, ngrams_observed.cnt[ft] + 1);
                    ngrams_observed.head[ft] = (head + 1) % G;

                    ngrams_observed.n_total++;
                }
            }
        }

        if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
            break;
        }

        // KV cache management
        // if no verification token matched, we simply remove all cells from this batch -> no fragmentation
        llama_kv_cache_seq_rm(ctx, -1, n_past, -1);

        if (seq_id_best != 0) {
            // if a verification token matched, we keep the best sequence and remove the rest
            // this leads to some KV cache fragmentation
            llama_kv_cache_seq_keep(ctx, seq_id_best);
            llama_kv_cache_seq_cp  (ctx, seq_id_best, 0, -1, -1);
            llama_kv_cache_seq_rm  (ctx, seq_id_best,    -1, -1);

            for (int s = 1; s < W + G + 1; ++s) {
                llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
            }
        }
    }

    auto t_dec_end = ggml_time_us();

xuxzh1's avatar
update  
xuxzh1 committed
455
456
457
458
    LOG("\n\n");

    LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
    LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict  / ((t_dec_end - t_dec_start) / 1e6f));
xuxzh1's avatar
init  
xuxzh1 committed
459

xuxzh1's avatar
update  
xuxzh1 committed
460
461
462
463
464
465
466
    LOG_INF("\n");
    LOG_INF("W = %2d\n", W);
    LOG_INF("N = %2d\n", N);
    LOG_INF("G = %2d\n", G);
    LOG_INF("\n");
    LOG_INF("n_predict = %d\n", n_predict);
    LOG_INF("n_accept  = %d\n", n_accept);
xuxzh1's avatar
init  
xuxzh1 committed
467

xuxzh1's avatar
update  
xuxzh1 committed
468
469
    LOG_INF("\n");
    common_perf_print(ctx, smpl);
xuxzh1's avatar
init  
xuxzh1 committed
470

xuxzh1's avatar
update  
xuxzh1 committed
471
    common_sampler_free(smpl);
xuxzh1's avatar
init  
xuxzh1 committed
472
473
474
475
476
477
478
479
480
481

    llama_kv_cache_view_free(&kvc_view);

    llama_batch_free(batch);

    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

xuxzh1's avatar
update  
xuxzh1 committed
482
    LOG("\n\n");
xuxzh1's avatar
init  
xuxzh1 committed
483
484
485

    return 0;
}