llava.cpp 23.2 KB
Newer Older
xuxzh1's avatar
init  
xuxzh1 committed
1
2
3
#include "clip.h"
#include "llava.h"

xuxzh1's avatar
update  
xuxzh1 committed
4
5
6
7
#include "llama.h"

#include <algorithm>
#include <cerrno>
xuxzh1's avatar
init  
xuxzh1 committed
8
9
#include <cstdio>
#include <cstdlib>
xuxzh1's avatar
update  
xuxzh1 committed
10
11
#include <cstring>
#include <limits>
xuxzh1's avatar
init  
xuxzh1 committed
12
#include <vector>
xuxzh1's avatar
update  
xuxzh1 committed
13
14
15
16
17
18
19
20

#define die(msg)          do { fputs("error: " msg "\n", stderr);                exit(1); } while (0)
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)

#define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
xuxzh1's avatar
init  
xuxzh1 committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

// RGB uint8 image
struct clip_image_u8 {
    int nx;
    int ny;

    std::vector<uint8_t> buf;
};

// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
    int nx;
    int ny;

    std::vector<float> buf;
};

struct clip_image_grid_shape {
    int first;
    int second;
};

/**
 * Selects the best resolution from a list of possible resolutions based on the original size.
 *
 * @param original_size The original size of the image in the format (width, height).
 * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
 * @return The best fit resolution in the format (width, height).
 */
static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
    int original_width  = original_size.first;
    int original_height = original_size.second;

    std::pair<int, int> best_fit;
    int max_effective_resolution = 0;
    int min_wasted_resolution = std::numeric_limits<int>::max();

    for (const auto& resolution : possible_resolutions) {
        int width = resolution.first;
        int height = resolution.second;
        float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
        int downscaled_width  = static_cast<int>(original_width * scale);
        int downscaled_height = static_cast<int>(original_height * scale);
        int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
        int wasted_resolution = (width * height) - effective_resolution;
xuxzh1's avatar
update  
xuxzh1 committed
67
        // LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
xuxzh1's avatar
init  
xuxzh1 committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
            max_effective_resolution = effective_resolution;
            min_wasted_resolution = wasted_resolution;
            best_fit = resolution;
        }
    }

    return best_fit;
}

/**
 * @brief Get the anyres image grid shape object
 *
 * @param image_size
 * @param grid_pinpoints
 * @param image_patch_size
 * @return <int, int>
 */
static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
    /**
        Conversion from gguf flat array to vector:
        std::vector<std::pair<int, int>> possible_resolutions;
        for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
            possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
        }
     */
    auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
    return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
}

// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
    struct {
        struct ggml_context * ctx;
    } model;

    const int32_t image_size = clip_image_size(ctx_clip);
    const int32_t patch_size = clip_patch_size(ctx_clip);

    int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)

    int num_patches_width  = grid_shape.first;  // grid 1-4
    int num_patches_height = grid_shape.second; // grid 1-4

    const size_t num_images = num_patches_width * num_patches_height + 1;

    // TODO: size calculation is not calculated - it's only tens of MB
    size_t ctx_size = 0;

    {
        ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
        ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
    }

    struct ggml_init_params params {
        /*.mem_size   =*/ ctx_size,
        /*.mem_buffer =*/ NULL,
        /*.no_alloc   =*/ false, // NOTE: this should be false when using the legacy API
    };

    // Python reference code for full unpad:
    /*
        base_image_feature = image_feature[0]
        image_feature = image_feature[1:]
        image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
        image_feature = image_feature.flatten(1, 2).flatten(2, 3)
        image_feature = unpad_image(image_feature, image_sizes[image_idx])
        image_feature = torch.cat((
            image_feature,
            self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
        ), dim=-1)
        image_feature = image_feature.flatten(1, 2).transpose(0, 1)
        image_feature = torch.cat((base_image_feature, image_feature), dim=0)
    */
    // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
    // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
    // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
    // Once all images are processed to prepended the base_image_features without any changes.

    // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
    /*
        image_feature = image_feature.view(2, 2, 24, 24, 4096)
        image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
        image_feature = image_feature.view(2, 24, 2, 24, 4096)
        image_feature = image_feature.flatten(0, 3)

        // Reshape to 4D tensor by merging the last two dimensions
        image_feature = image_feature.view(2, 2, 24, 24*4096)
        image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
        image_feature = image_feature.view(-1, 4096)
    */

    model.ctx = ggml_init(params);

    struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
    // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
    // fill it with the image embeddings, ignoring the base
    for (size_t i = 1; i < num_images; i++) {
        size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
        memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
    }

    struct ggml_cgraph  * gf = ggml_new_graph(model.ctx);
    size_t size_ele = ggml_type_size(GGML_TYPE_F32);

    struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
                                                                num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
                                                                num_patches_per_side,
                                                                num_patches_width,
                                                                num_patches_height,
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
    // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
    struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
    /**
     At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
         image_feature = torch.cat((
        image_feature,
        self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
    ), dim=-1)
     *
     */

    // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
    struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side,  size_ele * clip_n_mmproj_embd(ctx_clip), 0);
    // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
    ggml_build_forward_expand(gf, flatten);
    ggml_graph_compute_with_ctx(model.ctx, gf, 1);
xuxzh1's avatar
update  
xuxzh1 committed
197
    struct ggml_tensor* result = ggml_graph_node(gf, -1);
xuxzh1's avatar
init  
xuxzh1 committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

    memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
    // append without newline tokens (default behavior in llava_arch when not using unpad ):
    memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
    *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));

    // Debug: Test single segments
    // Current findings: sending base image, sending a segment embedding all works similar to python
    // However, permuted embeddings do not work yet (stride issue?)
    // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
    // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
    // *n_img_pos_out=576;

    ggml_free(model.ctx);
    return true;
}

xuxzh1's avatar
update  
xuxzh1 committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
    int width = image->nx;
    int height = image->ny;
    int num_patches = (height / patch_size) * (width / patch_size);
    clip_image_f32 * patch = clip_image_f32_init();
    patch->nx = patch_size * num_patches;
    patch->ny = patch_size;
    patch->buf.resize(3 * patch->nx * patch->ny);

    int patch_index = 0;

    for (int i = 0; i < height; i += patch_size) {
        for (int j = 0; j < width; j += patch_size) {
            for (int pi = 0; pi < patch_size; ++pi) {
                for (int pj = 0; pj < patch_size; ++pj) {
                    int input_index = ((i + pi) * width + (j + pj)) * 3;
                    int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
                    patch->buf[output_index] = image->buf[input_index];
                    patch->buf[output_index+1] = image->buf[input_index+1];
                    patch->buf[output_index+2] = image->buf[input_index+2];
                }
            }
            patch_index++;
        }
    }
    return patch;
}
xuxzh1's avatar
init  
xuxzh1 committed
242
243
244
245
246
247
248

static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
    // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
    clip_image_f32_batch img_res_v;
    img_res_v.size = 0;
    img_res_v.data = nullptr;
    if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
xuxzh1's avatar
update  
xuxzh1 committed
249
        LOG_ERR("%s: unable to preprocess image\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
250
251
252
253
254
255
256
257
        delete[] img_res_v.data;
        return false;
    }

    const int64_t t_img_enc_start_us = ggml_time_us();

    const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);

xuxzh1's avatar
update  
xuxzh1 committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    if (clip_is_minicpmv(ctx_clip)) {
        std::vector<float *> image_embd_v;
        image_embd_v.resize(img_res_v.size);
        struct clip_image_size * load_image_size = clip_image_size_init();
        for (size_t i = 0; i < img_res_v.size; i++) {
            const int64_t t_img_enc_step_start_us = ggml_time_us();
            image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip));
            int patch_size=14;
            load_image_size->width = img_res_v.data[i].nx;
            load_image_size->height = img_res_v.data[i].ny;
            clip_add_load_image_size(ctx_clip, load_image_size);
            bool encoded = false;
            int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
            if (has_minicpmv_projector == 2) {
                encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
            }
            else if (has_minicpmv_projector == 3) {
                encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
            }
            if (!encoded) {
                LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
                return false;
            }
            const int64_t t_img_enc_steop_batch_us = ggml_time_us();
            LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
        }
        const int64_t t_img_enc_batch_us = ggml_time_us();
        LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);

        int n_img_pos_out = 0;
        for (size_t i = 0; i < image_embd_v.size(); i++) {
            std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip));
            n_img_pos_out += clip_n_patches(ctx_clip);
        }
        *n_img_pos = n_img_pos_out;
        for (size_t i = 0; i < image_embd_v.size(); i++) {
            free(image_embd_v[i]);
        }
        image_embd_v.clear();
        load_image_size->width = img->nx;
        load_image_size->height = img->ny;
        clip_add_load_image_size(ctx_clip, load_image_size);
        LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
    }
    else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
xuxzh1's avatar
init  
xuxzh1 committed
303
304
305
306
307
        // flat / default llava-1.5 type embedding
        *n_img_pos = clip_n_patches(ctx_clip);
        bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
        delete[] img_res_v.data;
        if (!encoded) {
xuxzh1's avatar
update  
xuxzh1 committed
308
            LOG_ERR("Unable to encode image\n");
xuxzh1's avatar
init  
xuxzh1 committed
309
310
311

            return false;
        }
xuxzh1's avatar
update  
xuxzh1 committed
312
313
    }
    else {
xuxzh1's avatar
init  
xuxzh1 committed
314
315
316
317
318
319
320
321
        // spatial_unpad llava-1.6 type embedding
        // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
        std::vector<float *> image_embd_v;
        image_embd_v.resize(img_res_v.size);
        for (size_t i = 0; i < img_res_v.size; i++) {
            image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
            const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
            if (!encoded) {
xuxzh1's avatar
update  
xuxzh1 committed
322
                LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
xuxzh1's avatar
init  
xuxzh1 committed
323
324
325
326
                return false;
            }
        }
        const int64_t t_img_enc_batch_us = ggml_time_us();
xuxzh1's avatar
update  
xuxzh1 committed
327
        LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
xuxzh1's avatar
init  
xuxzh1 committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

        const int32_t * image_grid = clip_image_grid(ctx_clip);

        std::vector<std::pair<int, int>> grid_pinpoints;
        for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
            grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
        }

        // free all img_res_v - not needed anymore
        delete[] img_res_v.data;
        img_res_v.size = 0;
        img_res_v.data = nullptr;

        const int32_t image_size = clip_image_size(ctx_clip);

        struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);

        int n_img_pos_out;
        clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
        *n_img_pos = n_img_pos_out;

        for (size_t i = 0; i < image_embd_v.size(); i++) {
            free(image_embd_v[i]);
        }
        image_embd_v.clear();

        // debug image/segment/normalization content:
        // clip_image_u8 * tmp = clip_image_u8_init();
        // clip_image_convert_f32_to_u8(*image_feature, *tmp);
        // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
    }

xuxzh1's avatar
update  
xuxzh1 committed
360
    LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
xuxzh1's avatar
init  
xuxzh1 committed
361
362
363
364

    const int64_t t_img_enc_end_us = ggml_time_us();
    float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;

xuxzh1's avatar
update  
xuxzh1 committed
365
    LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
xuxzh1's avatar
init  
xuxzh1 committed
366
367
368
369
370
371
372
373
374

    return true;
}

bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
        // make sure that the correct mmproj was used, i.e., compare apples to apples
    int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
    auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
    if (n_image_embd != n_llama_embd) {
xuxzh1's avatar
update  
xuxzh1 committed
375
        LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
xuxzh1's avatar
init  
xuxzh1 committed
376
377
378
379
380
381
        return false;
    }
    return true;
}

bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
xuxzh1's avatar
update  
xuxzh1 committed
382
383
384
385
386
    int num_max_patches = 6;
    if (clip_is_minicpmv(ctx_clip)) {
        num_max_patches = 10;
    }
    float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
xuxzh1's avatar
init  
xuxzh1 committed
387
    if (!image_embd) {
xuxzh1's avatar
update  
xuxzh1 committed
388
        LOG_ERR("Unable to allocate memory for image embeddings\n");
xuxzh1's avatar
init  
xuxzh1 committed
389
390
391
392
393
        return false;
    }

    int n_img_pos;
    if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
xuxzh1's avatar
update  
xuxzh1 committed
394
        LOG_ERR("%s: cannot encode image, aborting\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
395
396
397
398
399
400
401
402
403
        free(image_embd);
        return false;
    }
    *image_embd_out = image_embd;
    *n_img_pos_out = n_img_pos;

    return true;
}

xuxzh1's avatar
update  
xuxzh1 committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
struct llava_embd_batch {
    std::vector<llama_pos>      pos;
    std::vector<int32_t>        n_seq_id;
    std::vector<llama_seq_id>   seq_id_0;
    std::vector<llama_seq_id *> seq_ids;
    std::vector<int8_t>         logits;
    llama_batch batch;
    llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
        pos     .resize(n_tokens);
        n_seq_id.resize(n_tokens);
        seq_ids .resize(n_tokens + 1);
        logits  .resize(n_tokens);
        seq_id_0.resize(1);
        seq_id_0[0] = seq_id;
        seq_ids [n_tokens] = nullptr;
        batch = {
            /*n_tokens       =*/ n_tokens,
            /*tokens         =*/ nullptr,
            /*embd           =*/ embd,
            /*pos            =*/ pos.data(),
            /*n_seq_id       =*/ n_seq_id.data(),
            /*seq_id         =*/ seq_ids.data(),
            /*logits         =*/ logits.data(),
        };
        for (int i = 0; i < n_tokens; i++) {
            batch.pos     [i] = pos_0 + i;
            batch.n_seq_id[i] = 1;
            batch.seq_id  [i] = seq_id_0.data();
            batch.logits  [i] = false;
        }
    }
};

xuxzh1's avatar
init  
xuxzh1 committed
437
438
439
440
441
442
443
444
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
    int n_embd  = llama_n_embd(llama_get_model(ctx_llama));

    for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
        int n_eval = image_embed->n_image_pos - i;
        if (n_eval > n_batch) {
            n_eval = n_batch;
        }
xuxzh1's avatar
update  
xuxzh1 committed
445
446
447
448
        float * embd = image_embed->embed+i*n_embd;
        llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0);
        if (llama_decode(ctx_llama, llava_batch.batch)) {
            LOG_ERR("%s : failed to eval\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
449
450
451
452
453
454
455
456
457
458
459
            return false;
        }
        *n_past += n_eval;
    }
    return true;
}

struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
    clip_image_u8 * img = clip_image_u8_init();
    if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
        clip_image_u8_free(img);
xuxzh1's avatar
update  
xuxzh1 committed
460
        LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
461
462
463
464
465
466
467
468
        return NULL;
    }

    float* image_embed = NULL;
    int n_image_pos = 0;
    bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
    if (!image_embed_result) {
        clip_image_u8_free(img);
xuxzh1's avatar
update  
xuxzh1 committed
469
        LOG_ERR("%s: couldn't embed the image\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
470
471
472
473
474
475
476
477
478
479
480
481
482
        return NULL;
    }

    clip_image_u8_free(img);
    auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
    result->embed = image_embed;
    result->n_image_pos = n_image_pos;
    return result;
}

static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
    auto file = fopen(path, "rb");
    if (file == NULL) {
xuxzh1's avatar
update  
xuxzh1 committed
483
        LOG_ERR("%s: can't read file %s\n", __func__, path);
xuxzh1's avatar
init  
xuxzh1 committed
484
485
486
487
488
489
490
491
492
        return false;
    }

    fseek(file, 0, SEEK_END);
    auto fileSize = ftell(file);
    fseek(file, 0, SEEK_SET);

    auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
    if (buffer == NULL) {
xuxzh1's avatar
update  
xuxzh1 committed
493
        LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
xuxzh1's avatar
init  
xuxzh1 committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
        perror("Memory allocation error");
        fclose(file);
        return false;
    }
    errno = 0;
    size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
    if (ferror(file)) {
        die_fmt("read error: %s", strerror(errno));
    }
    if (ret != (size_t) fileSize) {
        die("unexpectedly reached end of file");
    }
    fclose(file); // Close the file

    *bytesOut = buffer;
    *sizeOut = fileSize;
    return true;
}

struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
    unsigned char* image_bytes;
    long image_bytes_length;
    auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
    if (!loaded) {
xuxzh1's avatar
update  
xuxzh1 committed
518
        LOG_ERR("%s: failed to load %s\n", __func__, image_path);
xuxzh1's avatar
init  
xuxzh1 committed
519
520
521
522
523
524
525
526
527
528
529
530
531
        return NULL;
    }

    llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
    free(image_bytes);

    return embed;
}

void llava_image_embed_free(struct llava_image_embed * embed) {
    free(embed->embed);
    free(embed);
}