Commit c3a3c678 authored by chenych's avatar chenych
Browse files

Update to v0.9.3

parent 1bc2def5
......@@ -32,6 +32,9 @@ LLaMA Factory是一个大语言模型训练和推理的框架,支持了魔搭
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3-3.3](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
| [Llama 4](https://huggingface.co/meta-llama) | 109B/402B | llama4 |
| [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [Mistral Small](https://huggingface.co/mistralai) | 24B | mistral_small |
| [OLMo](https://hf-mirror.com/allenai) | 1B/7B | olmo |
| [Qwen (1-2.5) (Code/Math/MoE/QwQ)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen3 (MoE)](https://huggingface.co/Qwen) | 0.6B/1.7B/4B/8B/14B/32B/235B | qwen3 |
......
......@@ -5,7 +5,7 @@
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-544-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Citation](https://img.shields.io/badge/citation-614-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Docker Pulls](https://img.shields.io/docker/pulls/hiyouga/llamafactory)](https://hub.docker.com/r/hiyouga/llamafactory/tags)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
......@@ -14,6 +14,7 @@
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Open in Alaya](assets/alaya_new.svg)](https://docs.alayanew.com/docs/documents/newActivities/llamafactory/?utm_source=LLaMA-Factory)
[![Open in Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Open in Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![Open in Novita](https://img.shields.io/badge/Novita-Deploy%20Template-blue)](https://novita.ai/templates-library/105981?sharer=88115474-394e-4bda-968e-b88e123d0c47)
......@@ -40,7 +41,7 @@
</div>
👋 Join our [WeChat](assets/wechat.jpg) or [NPU user group](assets/wechat_npu.jpg).
👋 Join our [WeChat group](assets/wechat.jpg), [NPU user group](assets/wechat_npu.jpg) or [Alaya NeW user group](assets/wechat_alaya.png).
\[ English | [中文](README_zh.md) \]
......@@ -54,6 +55,7 @@ Choose your path:
- **Colab (free)**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
- **Local machine**: Please refer to [usage](#getting-started)
- **PAI-DSW (free trial)**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **Alaya NeW (cloud GPU deal)**: https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory
> [!NOTE]
> Except for the above links, all other websites are unauthorized third-party websites. Please carefully use them.
......@@ -103,12 +105,14 @@ Choose your path:
## Blogs
- [A One-Stop Code-Free Model Reinforcement Learning and Deployment Platform based on LLaMA-Factory and EasyR1](https://aws.amazon.com/cn/blogs/china/building-llm-model-hub-based-on-llamafactory-and-easyr1/) (Chinese)
- [Fine-tune Qwen2.5-VL for Autonomous Driving using LLaMA-Factory](https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory) (Chinese)
- [How Apoidea Group enhances visual information extraction from banking documents with multimodal models using LLaMA-Factory on Amazon SageMaker HyperPod](https://aws.amazon.com/cn/blogs/machine-learning/how-apoidea-group-enhances-visual-information-extraction-from-banking-documents-with-multimodal-models-using-llama-factory-on-amazon-sagemaker-hyperpod/) (English)
- [Easy Dataset × LLaMA Factory: Enabling LLMs to Efficiently Learn Domain Knowledge](https://buaa-act.feishu.cn/wiki/GVzlwYcRFiR8OLkHbL6cQpYin7g) (English)
- [LLaMA Factory: Fine-tuning the DeepSeek-R1-Distill-Qwen-7B Model for News Classifier](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b) (Chinese)
<details><summary>All Blogs</summary>
- [LLaMA Factory: Fine-tuning the DeepSeek-R1-Distill-Qwen-7B Model for News Classifier](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b) (Chinese)
- [A One-Stop Code-Free Model Fine-Tuning \& Deployment Platform based on SageMaker and LLaMA-Factory](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/) (Chinese)
- [LLaMA Factory Multi-Modal Fine-Tuning Practice: Fine-Tuning Qwen2-VL for Personal Tourist Guide](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl) (Chinese)
- [LLaMA Factory: Fine-tuning the LLaMA3 Model for Role-Playing](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) (Chinese)
......@@ -277,7 +281,7 @@ Choose your path:
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
| [MiMo](https://huggingface.co/XiaomiMiMo) | 7B | mimo |
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
| [MiniCPM](https://huggingface.co/openbmb) | 0.5B/1B/2B/4B/8B | cpm/cpm3/cpm4 |
| [MiniCPM-o-2.6/MiniCPM-V-2.6](https://huggingface.co/openbmb) | 8B | minicpm_o/minicpm_v |
| [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
......@@ -414,7 +418,7 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- [COIG-P (en&zh)](https://huggingface.co/datasets/m-a-p/COIG-P)
- [COIG-P (zh)](https://huggingface.co/datasets/m-a-p/COIG-P)
- [RLHF-V (en)](https://huggingface.co/datasets/openbmb/RLHF-V-Dataset)
- [VLFeedback (en)](https://huggingface.co/datasets/Zhihui/VLFeedback)
- [RLAIF-V (en)](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset)
......@@ -490,6 +494,8 @@ Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel
docker run -it --rm --gpus=all --ipc=host hiyouga/llamafactory:latest
```
This image is built on Ubuntu 22.04 (x86\_64), CUDA 12.4, Python 3.11, PyTorch 2.6.0, and Flash-attn 2.7.4.
Find the pre-built images: https://hub.docker.com/r/hiyouga/llamafactory/tags
Please refer to [build docker](#build-docker) to build the image yourself.
......@@ -677,11 +683,6 @@ docker build -f ./docker/docker-cuda/Dockerfile \
-t llamafactory:latest .
docker run -dit --ipc=host --gpus=all \
-v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./shared_data:/app/shared_data \
-v ./output:/app/output \
-p 7860:7860 \
-p 8000:8000 \
--name llamafactory \
......@@ -699,11 +700,6 @@ docker build -f ./docker/docker-npu/Dockerfile \
-t llamafactory:latest .
docker run -dit --ipc=host \
-v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./shared_data:/app/shared_data \
-v ./output:/app/output \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
......@@ -729,11 +725,6 @@ docker build -f ./docker/docker-rocm/Dockerfile \
-t llamafactory:latest .
docker run -dit --ipc=host \
-v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./shared_data:/app/shared_data \
-v ./output:/app/output \
-p 7860:7860 \
-p 8000:8000 \
--device /dev/kfd \
......@@ -746,12 +737,14 @@ docker exec -it llamafactory bash
</details>
<details><summary>Details about volume</summary>
<details><summary>Use Docker volumes</summary>
- `hf_cache`: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory.
- `ms_cache`: Similar to Hugging Face cache but for ModelScope users.
- `om_cache`: Similar to Hugging Face cache but for Modelers users.
- `shared_data`: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI.
You can uncomment `VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]` in the Dockerfile to use data volumes.
When building the Docker image, use `-v ./hf_cache:/root/.cache/huggingface` argument to mount the local directory to the container. The following data volumes are available.
- `hf_cache`: Utilize Hugging Face cache on the host machine.
- `shared_data`: The directionary to store datasets on the host machine.
- `output`: Set export dir to this location so that the merged result can be accessed directly on the host machine.
</details>
......@@ -901,6 +894,7 @@ If you have a project that should be incorporated, please contact via email or c
1. Xia et al. Using Pre-trained Language Model for Accurate ESG Prediction. FinNLP 2024. [[paper]](https://aclanthology.org/2024.finnlp-2.1/)
1. Liang et al. I-SHEEP: Self-Alignment of LLM from Scratch through an Iterative Self-Enhancement Paradigm. 2024. [[arxiv]](https://arxiv.org/abs/2408.08072)
1. Bai et al. Aligning Large Language Model with Direct Multi-Preference Optimization for Recommendation. CIKM 2024. [[paper]](https://dl.acm.org/doi/10.1145/3627673.3679611)
1. Zhang et al. CPsyCoun: A Report-based Multi-turn Dialogue Reconstruction and Evaluation Framework for Chinese Psychological Counseling. ACL 2024. [[paper]](https://aclanthology.org/2024.findings-acl.830.pdf)
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
......@@ -915,7 +909,7 @@ If you have a project that should be incorporated, please contact via email or c
1. **[360-LLaMA-Factory](https://github.com/Qihoo360/360-LLaMA-Factory)**: A modified library that supports long sequence SFT & DPO using ring attention.
1. **[Sky-T1](https://novasky-ai.github.io/posts/sky-t1/)**: An o1-like model fine-tuned by NovaSky AI with very small cost.
1. **[WeClone](https://github.com/xming521/WeClone)**: One-stop solution for creating your digital avatar from chat logs.
1. **[EmoLLM](https://github.com/SmartFlowAI/EmoLLM)**: A project about large language models (LLMs) and mental health.
</details>
## License
......
......@@ -5,7 +5,7 @@
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-544-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Citation](https://img.shields.io/badge/citation-614-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Docker Pulls](https://img.shields.io/docker/pulls/hiyouga/llamafactory)](https://hub.docker.com/r/hiyouga/llamafactory/tags)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
......@@ -14,6 +14,7 @@
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Open in Alaya](assets/alaya_new.svg)](https://docs.alayanew.com/docs/documents/newActivities/llamafactory/?utm_source=LLaMA-Factory)
[![Open in Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Open in Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![Open in Novita](https://img.shields.io/badge/Novita-Deploy%20Template-blue)](https://novita.ai/templates-library/105981?sharer=88115474-394e-4bda-968e-b88e123d0c47)
......@@ -40,7 +41,7 @@
</div>
👋 加入我们的[微信群](assets/wechat.jpg)[NPU 用户群](assets/wechat_npu.jpg)
👋 加入我们的[微信群](assets/wechat.jpg)[NPU 用户群](assets/wechat_npu.jpg)[九章智算云算力优惠群](assets/wechat_alaya.png)
\[ [English](README.md) | 中文 \]
......@@ -56,6 +57,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
- **Colab(免费)**:https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
- **本地机器**:请见[如何使用](#如何使用)
- **PAI-DSW(免费试用)**:https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **九章智算云(算力优惠活动)**:https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory
> [!NOTE]
> 除上述链接以外的其他网站均为未经许可的第三方网站,请小心甄别。
......@@ -105,12 +107,14 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
## 官方博客
- [基于 LLaMA-Factory 和 EasyR1 打造一站式无代码大模型强化学习和部署平台 LLM Model Hub](https://aws.amazon.com/cn/blogs/china/building-llm-model-hub-based-on-llamafactory-and-easyr1/)(中文)
- [使用 LLaMA-Factory 微调 Qwen2.5-VL 实现自动驾驶场景微调](https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory)(中文)
- [通过亚马逊 SageMaker HyperPod 上的 LLaMA-Factory 增强多模态模型银行文档的视觉信息提取](https://aws.amazon.com/cn/blogs/machine-learning/how-apoidea-group-enhances-visual-information-extraction-from-banking-documents-with-multimodal-models-using-llama-factory-on-amazon-sagemaker-hyperpod/)(英文)
- [Easy Dataset × LLaMA Factory: 让大模型高效学习领域知识](https://buaa-act.feishu.cn/wiki/KY9xwTGs1iqHrRkjXBwcZP9WnL9)(中文)
- [LLaMA Factory:微调 DeepSeek-R1-Distill-Qwen-7B 模型实现新闻标题分类器](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b)(中文)
<details><summary>全部博客</summary>
- [LLaMA Factory:微调 DeepSeek-R1-Distill-Qwen-7B 模型实现新闻标题分类器](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b)(中文)
- [基于 Amazon SageMaker 和 LLaMA-Factory 打造一站式无代码模型微调部署平台 Model Hub](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)(中文)
- [LLaMA Factory 多模态微调实践:微调 Qwen2-VL 构建文旅大模型](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl)(中文)
- [LLaMA Factory:微调LLaMA3模型实现角色扮演](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)(中文)
......@@ -279,7 +283,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
| [MiMo](https://huggingface.co/XiaomiMiMo) | 7B | mimo |
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
| [MiniCPM](https://huggingface.co/openbmb) | 0.5B/1B/2B/4B/8B | cpm/cpm3/cpm4 |
| [MiniCPM-o-2.6/MiniCPM-V-2.6](https://huggingface.co/openbmb) | 8B | minicpm_o/minicpm_v |
| [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
......@@ -416,7 +420,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- [COIG-P (en&zh)](https://huggingface.co/datasets/m-a-p/COIG-P)
- [COIG-P (zh)](https://huggingface.co/datasets/m-a-p/COIG-P)
- [RLHF-V (en)](https://huggingface.co/datasets/openbmb/RLHF-V-Dataset)
- [VLFeedback (en)](https://huggingface.co/datasets/Zhihui/VLFeedback)
- [RLAIF-V (en)](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset)
......@@ -492,6 +496,8 @@ pip install -e ".[torch,metrics]" --no-build-isolation
docker run -it --rm --gpus=all --ipc=host hiyouga/llamafactory:latest
```
该镜像基于 Ubuntu 22.04(x86\_64)、CUDA 12.4、Python 3.11、PyTorch 2.6.0 和 Flash-attn 2.7.4 构建。
查看全部镜像:https://hub.docker.com/r/hiyouga/llamafactory/tags
请参阅[构建 Docker](#构建-docker) 来重新构建镜像。
......@@ -679,11 +685,6 @@ docker build -f ./docker/docker-cuda/Dockerfile \
-t llamafactory:latest .
docker run -dit --ipc=host --gpus=all \
-v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./shared_data:/app/shared_data \
-v ./output:/app/output \
-p 7860:7860 \
-p 8000:8000 \
--name llamafactory \
......@@ -701,11 +702,6 @@ docker build -f ./docker/docker-npu/Dockerfile \
-t llamafactory:latest .
docker run -dit --ipc=host \
-v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./shared_data:/app/shared_data \
-v ./output:/app/output \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
......@@ -731,11 +727,6 @@ docker build -f ./docker/docker-rocm/Dockerfile \
-t llamafactory:latest .
docker run -dit --ipc=host \
-v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./shared_data:/app/shared_data \
-v ./output:/app/output \
-p 7860:7860 \
-p 8000:8000 \
--device /dev/kfd \
......@@ -748,11 +739,13 @@ docker exec -it llamafactory bash
</details>
<details><summary>数据卷详情</summary>
<details><summary>使用数据卷</summary>
您可以通过移除 Dockerfile 中 `VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]` 的注释来使用数据卷。
在构建 Docker 时使用参数 `-v ./hf_cache:/root/.cache/huggingface` 来挂载数据卷。各个数据卷的含义表示如下。
- `hf_cache`:使用宿主机的 Hugging Face 缓存文件夹,允许更改为新的目录。
- `ms_cache`:类似 Hugging Face 缓存文件夹,为 ModelScope 用户提供。
- `om_cache`:类似 Hugging Face 缓存文件夹,为 Modelers 用户提供。
- `hf_cache`:使用宿主机的 Hugging Face 缓存文件夹。
- `shared_data`:宿主机中存放数据集的文件夹路径。
- `output`:将导出目录设置为该路径后,即可在宿主机中访问导出后的模型。
......
This diff is collapsed.
This diff is collapsed.
assets/wechat.jpg

169 KB | W: | H:

assets/wechat.jpg

167 KB | W: | H:

assets/wechat.jpg
assets/wechat.jpg
assets/wechat.jpg
assets/wechat.jpg
  • 2-up
  • Swipe
  • Onion skin
......@@ -165,6 +165,14 @@ FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
### Elastic and Fault-Tolerant Supervised Fine-Tuning on Multiple Nodes
To launch an elastic job with `MAX_RESTARTS` failures retries, run the following on at least `MIN_NNODES` nodes and at most `MAX_NNODES` nodes. `RDZV_ID` should be set as a unique job id (shared by all nodes participating in the job). See also [torchrun](https://docs.pytorch.org/docs/stable/elastic/run.html).
```bash
FORCE_TORCHRUN=1 MIN_NNODES=1 MAX_NNODES=3 MAX_RESTARTS=3 RDZV_ID=llamafactory MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
#### Multimodal Supervised Fine-Tuning
```bash
......
......@@ -106,6 +106,14 @@ FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
### 支持弹性和容错的多机指令监督微调
要启动一个支持弹性节点和容错的多机指令微调,在每个节点上执行以下命令。弹性节点数量范围为 `MIN_NNODES:MAX_NNODES`,每个节点最多允许因为错误重启 `MAX_RESTARTS` 次。`RDZV_ID` 应设置为一个唯一的作业 ID(由参与该作业的所有节点共享)。更多新可以参考官方文档 [torchrun](https://docs.pytorch.org/docs/stable/elastic/run.html)
```bash
FORCE_TORCHRUN=1 MIN_NNODES=1 MAX_NNODES=3 MAX_RESTARTS=3 RDZV_ID=llamafactory MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
#### 使用 DeepSpeed ZeRO-3 平均分配显存
```bash
......
......@@ -12,6 +12,18 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Why we need this script for qwen_omni?
Because the qwen_omni model is constructed by two parts:
1. [Thinker]:[audio_encoder, vision_encoder, LLM backbone], which our repository does support to post-training.
2. [Talker]: [audio_decoder, wave_model], which is not supported to post-training without specific tokenizer.
When we post-training the model, we exactly train the [Thinker] part, and the [Talker] part is dropped.
So, to get the complete model, we need to merge the [Talker] part back to the [Thinker] part.
LoRA mode: [Thinker + LoRA weights] + [Original Talker] -> [Omni model]
Full mode: [Thinker] + [Original Talker] -> [Omni model]
For Processor, we do saved the processor from trained model instead of the original model.
"""
import os
import shutil
......
......@@ -42,24 +42,22 @@ def get_console_scripts() -> list[str]:
extra_require = {
"torch": ["torch>=1.13.1"],
"torch": ["torch>=2.0.0", "torchvision>=0.15.0"],
"torch-npu": ["torch==2.4.0", "torch-npu==2.4.0.post2", "decorator"],
"metrics": ["nltk", "jieba", "rouge-chinese"],
"deepspeed": ["deepspeed>=0.10.0,<=0.16.5"],
"deepspeed": ["deepspeed>=0.10.0,<=0.16.9"],
"liger-kernel": ["liger-kernel>=0.5.5"],
"bitsandbytes": ["bitsandbytes>=0.39.0"],
"hqq": ["hqq"],
"eetq": ["eetq"],
"gptq": ["optimum>=1.17.0", "auto-gptq>=0.5.0"],
"awq": ["autoawq"],
"gptq": ["optimum>=1.24.0", "gptqmodel>=2.0.0"],
"aqlm": ["aqlm[gpu]>=1.1.0"],
"vllm": ["vllm>=0.4.3,<=0.8.4"],
"vllm": ["vllm>=0.4.3,<=0.9.1"],
"sglang": ["sglang[srt]>=0.4.5", "transformers==4.51.1"],
"galore": ["galore-torch"],
"apollo": ["apollo-torch"],
"badam": ["badam>=1.2.1"],
"adam-mini": ["adam-mini"],
"qwen": ["transformers_stream_generator"],
"minicpm_v": [
"soundfile",
"torchvision",
......@@ -69,7 +67,6 @@ extra_require = {
"msgpack",
"referencing",
"jsonschema_specifications",
"transformers==4.48.3",
],
"modelscope": ["modelscope"],
"openmind": ["openmind"],
......
......@@ -83,7 +83,13 @@ def main():
master_port = os.getenv("MASTER_PORT", str(find_available_port()))
logger.info_rank0(f"Initializing {nproc_per_node} distributed tasks at: {master_addr}:{master_port}")
if int(nnodes) > 1:
print(f"Multi-node training enabled: num nodes: {nnodes}, node rank: {node_rank}")
logger.info_rank0(f"Multi-node training enabled: num nodes: {nnodes}, node rank: {node_rank}")
# elastic launch support
max_restarts = os.getenv("MAX_RESTARTS", "0")
rdzv_id = os.getenv("RDZV_ID")
min_nnodes = os.getenv("MIN_NNODES")
max_nnodes = os.getenv("MAX_NNODES")
env = deepcopy(os.environ)
if is_env_enabled("OPTIM_TORCH", "1"):
......@@ -91,25 +97,55 @@ def main():
env["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
env["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
# NOTE: DO NOT USE shell=True to avoid security risk
process = subprocess.run(
(
"torchrun --nnodes {nnodes} --node_rank {node_rank} --nproc_per_node {nproc_per_node} "
"--master_addr {master_addr} --master_port {master_port} {file_name} {args}"
if rdzv_id is not None:
# launch elastic job with fault tolerant support when possible
# see also https://docs.pytorch.org/docs/stable/elastic/train_script.html
rdzv_nnodes = nnodes
# elastic number of nodes if MIN_NNODES and MAX_NNODES are set
if min_nnodes is not None and max_nnodes is not None:
rdzv_nnodes = f"{min_nnodes}:{max_nnodes}"
process = subprocess.run(
(
"torchrun --nnodes {rdzv_nnodes} --nproc-per-node {nproc_per_node} "
"--rdzv-id {rdzv_id} --rdzv-backend c10d --rdzv-endpoint {master_addr}:{master_port} "
"--max-restarts {max_restarts} {file_name} {args}"
)
.format(
rdzv_nnodes=rdzv_nnodes,
nproc_per_node=nproc_per_node,
rdzv_id=rdzv_id,
master_addr=master_addr,
master_port=master_port,
max_restarts=max_restarts,
file_name=launcher.__file__,
args=" ".join(sys.argv[1:]),
)
.split(),
env=env,
check=True,
)
.format(
nnodes=nnodes,
node_rank=node_rank,
nproc_per_node=nproc_per_node,
master_addr=master_addr,
master_port=master_port,
file_name=launcher.__file__,
args=" ".join(sys.argv[1:]),
else:
# NOTE: DO NOT USE shell=True to avoid security risk
process = subprocess.run(
(
"torchrun --nnodes {nnodes} --node_rank {node_rank} --nproc_per_node {nproc_per_node} "
"--master_addr {master_addr} --master_port {master_port} {file_name} {args}"
)
.format(
nnodes=nnodes,
node_rank=node_rank,
nproc_per_node=nproc_per_node,
master_addr=master_addr,
master_port=master_port,
file_name=launcher.__file__,
args=" ".join(sys.argv[1:]),
)
.split(),
env=env,
check=True,
)
.split(),
env=env,
check=True,
)
sys.exit(process.returncode)
elif command in COMMAND_MAP:
COMMAND_MAP[command]()
......
......@@ -21,6 +21,7 @@ from typing import TYPE_CHECKING, Any, Literal, Optional
import numpy as np
import torch
import torch.nn.functional as F
from peft import PeftModel
from transformers import DataCollatorForSeq2Seq
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER
......@@ -94,6 +95,16 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
if self.template is None:
raise ValueError("Template is required for MultiModalDataCollator.")
if isinstance(self.model, PeftModel):
self.model = self.model.base_model.model
if self.model is not None and hasattr(self.model, "get_rope_index"): # for qwen2vl mrope
self.get_rope_func = self.model.get_rope_index # transformers < 4.52.0 or qwen2.5 omni
elif self.model is not None and hasattr(self.model, "model") and hasattr(self.model.model, "get_rope_index"):
self.get_rope_func = self.model.model.get_rope_index # transformers >= 4.52.0
else:
self.get_rope_func = None
def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
batch_images, batch_videos, batch_audios = [], [], []
batch_imglens, batch_vidlens, batch_audlens, batch_input_ids = [], [], [], []
......@@ -171,7 +182,7 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
features: dict[str, torch.Tensor] = super().__call__(features)
if self.model is not None and hasattr(self.model, "get_rope_index"): # for qwen2vl mrope
if self.get_rope_func is not None:
rope_index_kwargs = {
"input_ids": features["input_ids"],
"image_grid_thw": mm_inputs.get("image_grid_thw"),
......@@ -180,27 +191,29 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
}
if "second_per_grid_ts" in mm_inputs: # for qwen2vl
rope_index_kwargs["second_per_grid_ts"] = mm_inputs.get("second_per_grid_ts")
if "video_second_per_grid" in mm_inputs: # for qwen2omni
elif "video_second_per_grid" in mm_inputs: # for qwen2.5 omni
rope_index_kwargs["second_per_grids"] = mm_inputs.get("video_second_per_grid")
if getattr(self.model.config, "model_type", None) == "qwen2_5_omni_thinker": # for qwen2omni
if getattr(self.model.config, "model_type", None) == "qwen2_5_omni_thinker": # for qwen2.5 omni
rope_index_kwargs["use_audio_in_video"] = getattr(self.processor, "use_audio_in_video", False)
feature_attention_mask = mm_inputs.get("feature_attention_mask", None)
if feature_attention_mask is not None:
audio_feature_lengths = torch.sum(
feature_attention_mask, dim=1
) # FIXME need to get video image lengths
if feature_attention_mask is not None: # FIXME: need to get video image lengths
audio_feature_lengths = torch.sum(feature_attention_mask, dim=1)
rope_index_kwargs["audio_seqlens"] = audio_feature_lengths # prepare for input
delta0 = (1 - rope_index_kwargs["attention_mask"]).sum(dim=-1).unsqueeze(1)
# avoid conflict
new_position_ids, rope_deltas = self.model.get_rope_index(**rope_index_kwargs)
features["position_ids"], features["rope_deltas"] = (
new_position_ids.clone(),
rope_deltas - delta0,
) # avoid inplace operation FIXME
features["position_ids"], rope_deltas = self.get_rope_func(**rope_index_kwargs)
features["rope_deltas"] = rope_deltas - (1 - rope_index_kwargs["attention_mask"]).sum(
dim=-1
).unsqueeze(-1)
else: # for qwen2vl
features["position_ids"], features["rope_deltas"] = self.model.get_rope_index(**rope_index_kwargs)
features["position_ids"], features["rope_deltas"] = self.get_rope_func(**rope_index_kwargs)
if (
self.model is not None
and getattr(self.model.config, "model_type", None) in ["qwen2_vl", "qwen2_5_vl", "qwen2_5_omni_thinker"]
and ("position_ids" not in features or features["position_ids"].dim() != 3)
):
raise ValueError("Qwen2-VL/Qwen2.5-Omni model requires 3D position ids for mrope.")
if "cross_attention_mask" in mm_inputs: # for mllama inputs when pad_to_multiple_of is enabled
cross_attention_mask = mm_inputs.pop("cross_attention_mask")
......
......@@ -1274,9 +1274,10 @@ class PixtralPlugin(BasePlugin):
content = message["content"]
while IMAGE_PLACEHOLDER in content:
if self.expand_mm_tokens:
patch_size = processor.patch_size * getattr(processor, "spatial_merge_size", 1)
height, width = next(image_sizes)
num_height_tokens = height // processor.patch_size
num_width_tokens = width // processor.patch_size
num_height_tokens = height // patch_size
num_width_tokens = width // patch_size
replace_tokens = [[self.image_token] * num_width_tokens + [image_break_token]] * num_height_tokens
replace_tokens = [item for sublist in replace_tokens for item in sublist] # flatten list
replace_tokens[-1] = image_end_token
......
......@@ -501,7 +501,11 @@ def register_template(
default_slots = ["{{content}}"] if efficient_eos else ["{{content}}", {"eos_token"}]
default_user_formatter = StringFormatter(slots=["{{content}}"])
default_assistant_formatter = StringFormatter(slots=default_slots)
default_function_formatter = FunctionFormatter(slots=default_slots, tool_format="default")
if format_assistant is not None:
default_function_formatter = FunctionFormatter(slots=format_assistant.slots, tool_format="default")
else:
default_function_formatter = FunctionFormatter(slots=default_slots, tool_format="default")
default_tool_formatter = ToolFormatter(tool_format="default")
default_prefix_formatter = EmptyFormatter()
TEMPLATES[name] = template_class(
......@@ -798,6 +802,19 @@ register_template(
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
stop_words=["<|im_end|>"],
)
# copied from chatml template
register_template(
name="cpm4",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
stop_words=["<|im_end|>"],
)
......@@ -880,7 +897,6 @@ register_template(
register_template(
name="empty",
format_assistant=StringFormatter(slots=["{{content}}"]),
replace_jinja_template=True,
)
......@@ -1434,6 +1450,7 @@ register_template(
format_observation=StringFormatter(slots=["""[TOOL_RESULTS]{"content": {{content}}}[/TOOL_RESULTS]"""]),
format_tools=ToolFormatter(tool_format="mistral"),
format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
mm_plugin=get_mm_plugin(name="pixtral", image_token="[IMG]"),
)
......
......@@ -513,7 +513,7 @@ register_model_group(
register_model_group(
models={
"DeepSeek-V2-236B-0628-Chat": {
"DeepSeek-V2-0628-236B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2-Chat-0628",
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2-Chat-0628",
},
......@@ -521,7 +521,7 @@ register_model_group(
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2.5",
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2.5",
},
"DeepSeek-V2.5-236B-1210-Chat": {
"DeepSeek-V2.5-1210-236B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2.5-1210",
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2.5-1210",
},
......@@ -533,7 +533,7 @@ register_model_group(
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V3",
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V3",
},
"DeepSeek-V3-671B-0324-Chat": {
"DeepSeek-V3-0324-671B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V3-0324",
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V3-0324",
},
......@@ -556,10 +556,6 @@ register_model_group(
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
},
"DeepSeek-R1-8B-0528-Distill": {
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
},
"DeepSeek-R1-14B-Distill": {
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B",
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B",
......@@ -580,7 +576,11 @@ register_model_group(
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-R1",
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-R1",
},
"DeepSeek-R1-671B-0528-Chat": {
"DeepSeek-R1-0528-8B-Distill": {
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
},
"DeepSeek-R1-0528-671B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-R1-0528",
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-R1-0528",
},
......@@ -756,15 +756,15 @@ register_model_group(
DownloadSource.DEFAULT: "THUDM/glm-4-9b-chat-1m",
DownloadSource.MODELSCOPE: "ZhipuAI/glm-4-9b-chat-1m",
},
"GLM-4-9B-0414-Chat": {
"GLM-4-0414-9B-Chat": {
DownloadSource.DEFAULT: "THUDM/GLM-4-9B-0414",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4-9B-0414",
},
"GLM-4-32B-0414": {
"GLM-4-0414-32B-Base": {
DownloadSource.DEFAULT: "THUDM/GLM-4-32B-Base-0414",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4-32B-Base-0414",
},
"GLM-4-32B-0414-Chat": {
"GLM-4-0414-32B-Chat": {
DownloadSource.DEFAULT: "THUDM/GLM-4-32B-0414",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4-32B-0414",
},
......@@ -775,11 +775,11 @@ register_model_group(
register_model_group(
models={
"GLM-Z1-9B-0414-Chat": {
"GLM-Z1-0414-9B-Chat": {
DownloadSource.DEFAULT: "THUDM/GLM-Z1-9B-0414",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-Z1-9B-0414",
},
"GLM-Z1-32B-0414-Chat": {
"GLM-Z1-0414-32B-Chat": {
DownloadSource.DEFAULT: "THUDM/GLM-Z1-32B-0414",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-Z1-32B-0414",
},
......@@ -1503,6 +1503,21 @@ register_model_group(
)
register_model_group(
models={
"MiniCPM4-0.5B-Chat": {
DownloadSource.DEFAULT: "openbmb/MiniCPM4-0.5B",
DownloadSource.MODELSCOPE: "OpenBMB/MiniCPM4-0.5B",
},
"MiniCPM4-8B-Chat": {
DownloadSource.DEFAULT: "openbmb/MiniCPM4-8B",
DownloadSource.MODELSCOPE: "OpenBMB/MiniCPM4-8B",
},
},
template="cpm4",
)
register_model_group(
models={
"MiniCPM-o-2_6": {
......@@ -1592,6 +1607,22 @@ register_model_group(
)
register_model_group(
models={
"Mistral-Small-3.1-24B-Base": {
DownloadSource.DEFAULT: "mistralai/Mistral-Small-3.1-24B-Base-2503",
DownloadSource.MODELSCOPE: "mistralai/Mistral-Small-3.1-24B-Base-2503",
},
"Mistral-Small-3.1-24B-Instruct": {
DownloadSource.DEFAULT: "mistralai/Mistral-Small-3.1-24B-Instruct-2503",
DownloadSource.MODELSCOPE: "mistralai/Mistral-Small-3.1-24B-Instruct-2503",
},
},
template="mistral_small",
multimodal=True,
)
register_model_group(
models={
"Mixtral-8x7B-v0.1": {
......
......@@ -27,7 +27,7 @@ import trl
from transformers.utils import is_torch_cuda_available, is_torch_npu_available
VERSION = "0.9.3.dev0"
VERSION = "0.9.4.dev0"
def print_env() -> None:
......
......@@ -202,6 +202,15 @@ class RLHFArguments:
default="lora",
metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."},
)
ld_alpha: Optional[float] = field(
default=None,
metadata={
"help": (
"Alpha parameter from the LD-DPO paper, which controls the weighting of"
" the verbose token log-probabilities in responses."
)
},
)
@dataclass
......
......@@ -148,7 +148,7 @@ def _check_extra_dependencies(
check_version("mixture-of-depth>=1.1.6", mandatory=True)
if model_args.infer_backend == EngineName.VLLM:
check_version("vllm>=0.4.3,<=0.8.6")
check_version("vllm>=0.4.3,<=0.9.1")
check_version("vllm", mandatory=True)
elif model_args.infer_backend == EngineName.SGLANG:
check_version("sglang>=0.4.5")
......@@ -169,10 +169,15 @@ def _check_extra_dependencies(
if finetuning_args.plot_loss:
check_version("matplotlib", mandatory=True)
if training_args is not None and training_args.predict_with_generate:
check_version("jieba", mandatory=True)
check_version("nltk", mandatory=True)
check_version("rouge_chinese", mandatory=True)
if training_args is not None:
if training_args.deepspeed:
# pin deepspeed version < 0.17 because of https://github.com/deepspeedai/DeepSpeed/issues/7347
check_version("deepspeed>=0.10.0,<=0.16.9", mandatory=True)
if training_args.predict_with_generate:
check_version("jieba", mandatory=True)
check_version("nltk", mandatory=True)
check_version("rouge_chinese", mandatory=True)
def _parse_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_CLS:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment