Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
LLaMA-Factory
Commits
8293100a
Commit
8293100a
authored
Jan 16, 2025
by
luopl
Browse files
update to 0.9.2.dev0
parent
2778a3d0
Changes
124
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
180 additions
and
40 deletions
+180
-40
.env.local
.env.local
+1
-0
.gitignore
.gitignore
+2
-0
assets/wechat.jpg
assets/wechat.jpg
+0
-0
assets/wechat_npu.jpg
assets/wechat_npu.jpg
+0
-0
data/dataset_info.json
data/dataset_info.json
+10
-2
examples/README.md
examples/README.md
+37
-17
examples/README_zh.md
examples/README_zh.md
+37
-17
examples/extras/adam_mini/qwen2_full_sft.yaml
examples/extras/adam_mini/qwen2_full_sft.yaml
+1
-0
examples/extras/apollo/llama3_full_sft.yaml
examples/extras/apollo/llama3_full_sft.yaml
+45
-0
examples/extras/badam/llama3_full_sft.yaml
examples/extras/badam/llama3_full_sft.yaml
+1
-0
examples/extras/fsdp_qlora/llama3_lora_sft.yaml
examples/extras/fsdp_qlora/llama3_lora_sft.yaml
+1
-0
examples/extras/galore/llama3_full_sft.yaml
examples/extras/galore/llama3_full_sft.yaml
+4
-3
examples/extras/llama_pro/llama3_freeze_sft.yaml
examples/extras/llama_pro/llama3_freeze_sft.yaml
+1
-0
examples/extras/loraplus/llama3_lora_sft.yaml
examples/extras/loraplus/llama3_lora_sft.yaml
+1
-0
examples/extras/mod/llama3_full_sft.yaml
examples/extras/mod/llama3_full_sft.yaml
+1
-0
examples/extras/nlg_eval/llama3_lora_predict.yaml
examples/extras/nlg_eval/llama3_lora_predict.yaml
+29
-0
examples/extras/pissa/llama3_lora_sft.yaml
examples/extras/pissa/llama3_lora_sft.yaml
+1
-0
examples/inference/llama3.yaml
examples/inference/llama3.yaml
+2
-0
examples/inference/llama3_full_sft.yaml
examples/inference/llama3_full_sft.yaml
+4
-0
examples/inference/llama3_lora_sft.yaml
examples/inference/llama3_lora_sft.yaml
+2
-1
No files found.
.env.local
View file @
8293100a
...
@@ -12,6 +12,7 @@ FORCE_CHECK_IMPORTS=
...
@@ -12,6 +12,7 @@ FORCE_CHECK_IMPORTS=
LLAMAFACTORY_VERBOSITY=
LLAMAFACTORY_VERBOSITY=
USE_MODELSCOPE_HUB=
USE_MODELSCOPE_HUB=
USE_OPENMIND_HUB=
USE_OPENMIND_HUB=
USE_RAY=
RECORD_VRAM=
RECORD_VRAM=
# torchrun
# torchrun
FORCE_TORCHRUN=
FORCE_TORCHRUN=
...
...
.gitignore
View file @
8293100a
...
@@ -171,3 +171,5 @@ config/
...
@@ -171,3 +171,5 @@ config/
saves/
saves/
output/
output/
wandb/
wandb/
swanlog/
generated_predictions.jsonl
assets/wechat.jpg
View replaced file @
2778a3d0
View file @
8293100a
165 KB
|
W:
|
H:
164 KB
|
W:
|
H:
2-up
Swipe
Onion skin
assets/wechat_npu.jpg
View replaced file @
2778a3d0
View file @
8293100a
167 KB
|
W:
|
H:
167 KB
|
W:
|
H:
2-up
Swipe
Onion skin
data/dataset_info.json
View file @
8293100a
...
@@ -296,6 +296,14 @@
...
@@ -296,6 +296,14 @@
"response"
:
"answer"
"response"
:
"answer"
}
}
},
},
"openo1_sft"
:
{
"hf_hub_url"
:
"llamafactory/OpenO1-SFT"
,
"ms_hub_url"
:
"llamafactory/OpenO1-SFT"
,
"columns"
:
{
"prompt"
:
"prompt"
,
"response"
:
"response"
}
},
"llava_1k_en"
:
{
"llava_1k_en"
:
{
"hf_hub_url"
:
"BUAADreamer/llava-en-zh-2k"
,
"hf_hub_url"
:
"BUAADreamer/llava-en-zh-2k"
,
"subset"
:
"en"
,
"subset"
:
"en"
,
...
@@ -426,7 +434,7 @@
...
@@ -426,7 +434,7 @@
}
}
},
},
"dpo_mix_en"
:
{
"dpo_mix_en"
:
{
"hf_hub_url"
:
"
hiyouga
/DPO-En-Zh-20k"
,
"hf_hub_url"
:
"
llamafactory
/DPO-En-Zh-20k"
,
"subset"
:
"en"
,
"subset"
:
"en"
,
"ranking"
:
true
,
"ranking"
:
true
,
"formatting"
:
"sharegpt"
,
"formatting"
:
"sharegpt"
,
...
@@ -437,7 +445,7 @@
...
@@ -437,7 +445,7 @@
}
}
},
},
"dpo_mix_zh"
:
{
"dpo_mix_zh"
:
{
"hf_hub_url"
:
"
hiyouga
/DPO-En-Zh-20k"
,
"hf_hub_url"
:
"
llamafactory
/DPO-En-Zh-20k"
,
"subset"
:
"zh"
,
"subset"
:
"zh"
,
"ranking"
:
true
,
"ranking"
:
true
,
"formatting"
:
"sharegpt"
,
"formatting"
:
"sharegpt"
,
...
...
examples/README.md
View file @
8293100a
...
@@ -13,6 +13,8 @@ Make sure to execute these commands in the `LLaMA-Factory` directory.
...
@@ -13,6 +13,8 @@ Make sure to execute these commands in the `LLaMA-Factory` directory.
Use
`CUDA_VISIBLE_DEVICES`
(GPU) or
`ASCEND_RT_VISIBLE_DEVICES`
(NPU) to choose computing devices.
Use
`CUDA_VISIBLE_DEVICES`
(GPU) or
`ASCEND_RT_VISIBLE_DEVICES`
(NPU) to choose computing devices.
By default, LLaMA-Factory uses all visible computing devices.
## Examples
## Examples
### LoRA Fine-Tuning
### LoRA Fine-Tuning
...
@@ -80,12 +82,6 @@ llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
...
@@ -80,12 +82,6 @@ llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
llamafactory-cli
eval
examples/train_lora/llama3_lora_eval.yaml
llamafactory-cli
eval
examples/train_lora/llama3_lora_eval.yaml
```
```
#### Batch Predicting and Computing BLEU and ROUGE Scores
```
bash
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
```
#### Supervised Fine-Tuning on Multiple Nodes
#### Supervised Fine-Tuning on Multiple Nodes
```
bash
```
bash
...
@@ -99,6 +95,12 @@ FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500
...
@@ -99,6 +95,12 @@ FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500
FORCE_TORCHRUN
=
1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
FORCE_TORCHRUN
=
1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
```
```
#### Supervised Fine-Tuning with Ray on 4 GPUs
```
bash
USE_RAY
=
1 llamafactory-cli train examples/train_full/llama3_lora_sft_ray.yaml
```
### QLoRA Fine-Tuning
### QLoRA Fine-Tuning
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes/HQQ/EETQ Quantization (Recommended)
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes/HQQ/EETQ Quantization (Recommended)
...
@@ -107,6 +109,12 @@ FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.
...
@@ -107,6 +109,12 @@ FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
```
```
#### Supervised Fine-Tuning with 4-bit Bitsandbytes Quantization on Ascend NPU
```
bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml
```
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
```
bash
```
bash
...
@@ -130,14 +138,14 @@ llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
...
@@ -130,14 +138,14 @@ llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
#### Supervised Fine-Tuning on Single Node
#### Supervised Fine-Tuning on Single Node
```
bash
```
bash
FORCE_TORCHRUN
=
1 llamafactory-cli train examples/train_full/llama3_full_sft
_ds3
.yaml
FORCE_TORCHRUN
=
1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
```
#### Supervised Fine-Tuning on Multiple Nodes
#### Supervised Fine-Tuning on Multiple Nodes
```
bash
```
bash
FORCE_TORCHRUN
=
1
NNODES
=
2
RANK
=
0
MASTER_ADDR
=
192.168.0.1
MASTER_PORT
=
29500 llamafactory-cli train examples/train_full/llama3_full_sft
_ds3
.yaml
FORCE_TORCHRUN
=
1
NNODES
=
2
NODE_
RANK
=
0
MASTER_ADDR
=
192.168.0.1
MASTER_PORT
=
29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN
=
1
NNODES
=
2
RANK
=
1
MASTER_ADDR
=
192.168.0.1
MASTER_PORT
=
29500 llamafactory-cli train examples/train_full/llama3_full_sft
_ds3
.yaml
FORCE_TORCHRUN
=
1
NNODES
=
2
NODE_
RANK
=
1
MASTER_ADDR
=
192.168.0.1
MASTER_PORT
=
29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
```
#### Multimodal Supervised Fine-Tuning
#### Multimodal Supervised Fine-Tuning
...
@@ -146,12 +154,6 @@ FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llama
...
@@ -146,12 +154,6 @@ FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llama
FORCE_TORCHRUN
=
1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml
FORCE_TORCHRUN
=
1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml
```
```
#### Batch Predicting and Computing BLEU and ROUGE Scores
```
bash
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
```
### Merging LoRA Adapters and Quantization
### Merging LoRA Adapters and Quantization
#### Merge LoRA Adapters
#### Merge LoRA Adapters
...
@@ -170,13 +172,19 @@ llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
...
@@ -170,13 +172,19 @@ llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
### Inferring LoRA Fine-Tuned Models
### Inferring LoRA Fine-Tuned Models
#### Use CLI
#### Batch Generation using vLLM Tensor Parallel
```
python scripts/vllm_infer.py --model_name_or_path path_to_merged_model --dataset alpaca_en_demo
```
#### Use CLI ChatBox
```
bash
```
bash
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```
```
#### Use Web UI
#### Use Web UI
ChatBox
```
bash
```
bash
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
...
@@ -196,6 +204,12 @@ llamafactory-cli api examples/inference/llama3_lora_sft.yaml
...
@@ -196,6 +204,12 @@ llamafactory-cli api examples/inference/llama3_lora_sft.yaml
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```
```
#### Full-Parameter Fine-Tuning using APOLLO
```
bash
llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml
```
#### Full-Parameter Fine-Tuning using BAdam
#### Full-Parameter Fine-Tuning using BAdam
```
bash
```
bash
...
@@ -238,3 +252,9 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
...
@@ -238,3 +252,9 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```
bash
```
bash
bash examples/extras/fsdp_qlora/train.sh
bash examples/extras/fsdp_qlora/train.sh
```
```
#### Computing BLEU and ROUGE Scores
```
bash
llamafactory-cli train examples/extras/nlg_eval/llama3_lora_predict.yaml
```
examples/README_zh.md
View file @
8293100a
...
@@ -13,6 +13,8 @@
...
@@ -13,6 +13,8 @@
使用
`CUDA_VISIBLE_DEVICES`
(GPU)或
`ASCEND_RT_VISIBLE_DEVICES`
(NPU)选择计算设备。
使用
`CUDA_VISIBLE_DEVICES`
(GPU)或
`ASCEND_RT_VISIBLE_DEVICES`
(NPU)选择计算设备。
LLaMA-Factory 默认使用所有可见的计算设备。
## 示例
## 示例
### LoRA 微调
### LoRA 微调
...
@@ -80,12 +82,6 @@ llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
...
@@ -80,12 +82,6 @@ llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
llamafactory-cli
eval
examples/train_lora/llama3_lora_eval.yaml
llamafactory-cli
eval
examples/train_lora/llama3_lora_eval.yaml
```
```
#### 批量预测并计算 BLEU 和 ROUGE 分数
```
bash
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
```
#### 多机指令监督微调
#### 多机指令监督微调
```
bash
```
bash
...
@@ -99,6 +95,12 @@ FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500
...
@@ -99,6 +95,12 @@ FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500
FORCE_TORCHRUN
=
1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
FORCE_TORCHRUN
=
1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
```
```
#### 使用 Ray 在 4 张 GPU 上微调
```
bash
USE_RAY
=
1 llamafactory-cli train examples/train_full/llama3_lora_sft_ray.yaml
```
### QLoRA 微调
### QLoRA 微调
#### 基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐)
#### 基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐)
...
@@ -107,6 +109,12 @@ FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.
...
@@ -107,6 +109,12 @@ FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
```
```
#### 在 NPU 上基于 4 比特 Bitsandbytes 量化进行指令监督微调
```
bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml
```
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
```
bash
```
bash
...
@@ -130,14 +138,14 @@ llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
...
@@ -130,14 +138,14 @@ llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
#### 在单机上进行指令监督微调
#### 在单机上进行指令监督微调
```
bash
```
bash
FORCE_TORCHRUN
=
1 llamafactory-cli train examples/train_full/llama3_full_sft
_ds3
.yaml
FORCE_TORCHRUN
=
1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
```
#### 在多机上进行指令监督微调
#### 在多机上进行指令监督微调
```
bash
```
bash
FORCE_TORCHRUN
=
1
NNODES
=
2
RANK
=
0
MASTER_ADDR
=
192.168.0.1
MASTER_PORT
=
29500 llamafactory-cli train examples/train_full/llama3_full_sft
_ds3
.yaml
FORCE_TORCHRUN
=
1
NNODES
=
2
NODE_
RANK
=
0
MASTER_ADDR
=
192.168.0.1
MASTER_PORT
=
29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN
=
1
NNODES
=
2
RANK
=
1
MASTER_ADDR
=
192.168.0.1
MASTER_PORT
=
29500 llamafactory-cli train examples/train_full/llama3_full_sft
_ds3
.yaml
FORCE_TORCHRUN
=
1
NNODES
=
2
NODE_
RANK
=
1
MASTER_ADDR
=
192.168.0.1
MASTER_PORT
=
29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
```
#### 多模态指令监督微调
#### 多模态指令监督微调
...
@@ -146,12 +154,6 @@ FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llama
...
@@ -146,12 +154,6 @@ FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llama
FORCE_TORCHRUN
=
1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml
FORCE_TORCHRUN
=
1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml
```
```
#### 批量预测并计算 BLEU 和 ROUGE 分数
```
bash
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
```
### 合并 LoRA 适配器与模型量化
### 合并 LoRA 适配器与模型量化
#### 合并 LoRA 适配器
#### 合并 LoRA 适配器
...
@@ -170,13 +172,19 @@ llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
...
@@ -170,13 +172,19 @@ llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
### 推理 LoRA 模型
### 推理 LoRA 模型
#### 使用命令行接口
#### 使用 vLLM+TP 批量推理
```
python scripts/vllm_infer.py --model_name_or_path path_to_merged_model --dataset alpaca_en_demo
```
#### 使用命令行对话框
```
bash
```
bash
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```
```
#### 使用浏览器
界面
#### 使用浏览器
对话框
```
bash
```
bash
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
...
@@ -196,6 +204,12 @@ llamafactory-cli api examples/inference/llama3_lora_sft.yaml
...
@@ -196,6 +204,12 @@ llamafactory-cli api examples/inference/llama3_lora_sft.yaml
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```
```
#### 使用 APOLLO 进行全参数训练
```
bash
llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml
```
#### 使用 BAdam 进行全参数训练
#### 使用 BAdam 进行全参数训练
```
bash
```
bash
...
@@ -238,3 +252,9 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
...
@@ -238,3 +252,9 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```
bash
```
bash
bash examples/extras/fsdp_qlora/train.sh
bash examples/extras/fsdp_qlora/train.sh
```
```
#### 计算 BLEU 和 ROUGE 分数
```
bash
llamafactory-cli train examples/extras/nlg_eval/llama3_lora_predict.yaml
```
examples/extras/adam_mini/qwen2_full_sft.yaml
View file @
8293100a
### model
### model
model_name_or_path
:
Qwen/Qwen2-1.5B-Instruct
model_name_or_path
:
Qwen/Qwen2-1.5B-Instruct
trust_remote_code
:
true
### method
### method
stage
:
sft
stage
:
sft
...
...
examples/extras/apollo/llama3_full_sft.yaml
0 → 100644
View file @
8293100a
### model
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code
:
true
### method
stage
:
sft
do_train
:
true
finetuning_type
:
full
use_apollo
:
true
apollo_layerwise
:
true
# choices: [true, false], use false for DDP training
apollo_target
:
all
apollo_rank
:
128
apollo_scale
:
32.0
apollo_scale_type
:
channel
### dataset
dataset
:
identity,alpaca_en_demo
template
:
llama3
cutoff_len
:
2048
max_samples
:
1000
overwrite_cache
:
true
preprocessing_num_workers
:
16
### output
output_dir
:
saves/llama3-8b/full/sft
logging_steps
:
10
save_steps
:
500
plot_loss
:
true
overwrite_output_dir
:
true
### train
per_device_train_batch_size
:
1
gradient_accumulation_steps
:
1
# use 1 for layerwise apollo
learning_rate
:
1.0e-5
num_train_epochs
:
3.0
lr_scheduler_type
:
cosine
warmup_ratio
:
0.1
pure_bf16
:
true
ddp_timeout
:
180000000
### eval
val_size
:
0.1
per_device_eval_batch_size
:
1
eval_strategy
:
steps
eval_steps
:
500
examples/extras/badam/llama3_full_sft.yaml
View file @
8293100a
### model
### model
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code
:
true
### method
### method
stage
:
sft
stage
:
sft
...
...
examples/extras/fsdp_qlora/llama3_lora_sft.yaml
View file @
8293100a
### model
### model
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
quantization_bit
:
4
quantization_bit
:
4
trust_remote_code
:
true
### method
### method
stage
:
sft
stage
:
sft
...
...
examples/extras/galore/llama3_full_sft.yaml
View file @
8293100a
### model
### model
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code
:
true
### method
### method
stage
:
sft
stage
:
sft
do_train
:
true
do_train
:
true
finetuning_type
:
full
finetuning_type
:
full
use_galore
:
true
use_galore
:
true
galore_layerwise
:
true
galore_layerwise
:
true
# choices: [true, false], use false for DDP training
galore_target
:
mlp,self_attn
galore_target
:
all
galore_rank
:
128
galore_rank
:
128
galore_scale
:
2.0
galore_scale
:
2.0
...
@@ -28,7 +29,7 @@ overwrite_output_dir: true
...
@@ -28,7 +29,7 @@ overwrite_output_dir: true
### train
### train
per_device_train_batch_size
:
1
per_device_train_batch_size
:
1
gradient_accumulation_steps
:
1
gradient_accumulation_steps
:
1
# use 1 for layerwise galore
learning_rate
:
1.0e-5
learning_rate
:
1.0e-5
num_train_epochs
:
3.0
num_train_epochs
:
3.0
lr_scheduler_type
:
cosine
lr_scheduler_type
:
cosine
...
...
examples/extras/llama_pro/llama3_freeze_sft.yaml
View file @
8293100a
### model
### model
model_name_or_path
:
models/llama3-8b-pro
model_name_or_path
:
models/llama3-8b-pro
trust_remote_code
:
true
### method
### method
stage
:
sft
stage
:
sft
...
...
examples/extras/loraplus/llama3_lora_sft.yaml
View file @
8293100a
### model
### model
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code
:
true
### method
### method
stage
:
sft
stage
:
sft
...
...
examples/extras/mod/llama3_full_sft.yaml
View file @
8293100a
### model
### model
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code
:
true
### method
### method
stage
:
sft
stage
:
sft
...
...
examples/extras/nlg_eval/llama3_lora_predict.yaml
0 → 100644
View file @
8293100a
# The batch generation can be SLOW using this config.
# For faster inference, we recommend to use `scripts/vllm_infer.py`.
### model
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path
:
saves/llama3-8b/lora/sft
trust_remote_code
:
true
### method
stage
:
sft
do_predict
:
true
finetuning_type
:
lora
### dataset
eval_dataset
:
identity,alpaca_en_demo
template
:
llama3
cutoff_len
:
2048
max_samples
:
50
overwrite_cache
:
true
preprocessing_num_workers
:
16
### output
output_dir
:
saves/llama3-8b/lora/predict
overwrite_output_dir
:
true
### eval
per_device_eval_batch_size
:
1
predict_with_generate
:
true
ddp_timeout
:
180000000
examples/extras/pissa/llama3_lora_sft.yaml
View file @
8293100a
### model
### model
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code
:
true
### method
### method
stage
:
sft
stage
:
sft
...
...
examples/inference/llama3.yaml
View file @
8293100a
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
template
:
llama3
template
:
llama3
infer_backend
:
huggingface
# choices: [huggingface, vllm]
trust_remote_code
:
true
examples/inference/llama3_full_sft.yaml
0 → 100644
View file @
8293100a
model_name_or_path
:
saves/llama3-8b/full/sft
template
:
llama3
infer_backend
:
huggingface
# choices: [huggingface, vllm]
trust_remote_code
:
true
examples/inference/llama3_lora_sft.yaml
View file @
8293100a
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
model_name_or_path
:
meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path
:
saves/llama3-8b/lora/sft
adapter_name_or_path
:
saves/llama3-8b/lora/sft
template
:
llama3
template
:
llama3
finetuning_type
:
lora
infer_backend
:
huggingface
# choices: [huggingface, vllm]
trust_remote_code
:
true
Prev
1
2
3
4
5
…
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment