Commit 581d366d authored by chenych's avatar chenych
Browse files

Support GLM-4/GLM-4-0414/GLM-Z1

parent 428c5813
......@@ -16,6 +16,8 @@ USE_MODELSCOPE_HUB=
USE_OPENMIND_HUB=
USE_RAY=
RECORD_VRAM=
OPTIM_TORCH=
NPU_JIT_COMPILE=
# torchrun
FORCE_TORCHRUN=
MASTER_ADDR=
......
.PHONY: build commit quality style test
.PHONY: build commit license quality style test
check_dirs := scripts src tests setup.py
build:
pip install build && python -m build
pip3 install build && python3 -m build
commit:
pre-commit install
pre-commit run --all-files
license:
python3 tests/check_license.py $(check_dirs)
quality:
ruff check $(check_dirs)
ruff format --check $(check_dirs)
......
......@@ -28,6 +28,7 @@ LLaMA Factory是一个大语言模型训练和推理的框架,支持了魔搭
| [Qwen1.5 (Code/MoE)/Qwen2/Qwen2.5/QwQ](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B | qwen |
| [XVERSE](https://hf-mirror.com/xverse) | 7B/13B | xverse |
| [OLMo](https://hf-mirror.com/allenai) | 1B/7B | olmo |
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/THUDM) | 9B/32B | glm4 |
持续更新中...
......
......@@ -5,7 +5,7 @@
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-349-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Citation](https://img.shields.io/badge/citation-392-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
......@@ -42,6 +42,7 @@ Choose your path:
- **Local machine**: Please refer to [usage](#getting-started)
- **PAI-DSW (free trial)**: [Llama3 Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | [Qwen2-VL Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl) | [DeepSeek-R1-Distill Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b)
- **Amazon SageMaker**: [Blog](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
- **Easy Dataset**: [Fine-tune on Synthetic Data](https://buaa-act.feishu.cn/wiki/GVzlwYcRFiR8OLkHbL6cQpYin7g)
> [!NOTE]
> Except for the above links, all other websites are unauthorized third-party websites. Please carefully use them.
......@@ -106,13 +107,15 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog
[25/04/14] We supported fine-tuning the **[GLM-Z1](https://huggingface.co/THUDM/GLM-Z1-9B-0414)** and **[Kimi-VL](https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct)** models.
[25/04/06] We supported fine-tuning the **[Llama 4](https://ai.meta.com/blog/llama-4-multimodal-intelligence/)** model. See [PR #7611](https://github.com/hiyouga/LLaMA-Factory/pull/7611) to get started.
[25/03/31] We supported fine-tuning the **[Qwen2.5 Omni](https://qwenlm.github.io/blog/qwen2.5-omni/)** model. See [PR #7537](https://github.com/hiyouga/LLaMA-Factory/pull/7537) to get started.
[25/03/15] We supported **[SGLang](https://github.com/sgl-project/sglang)** as inference backend. Try `infer_backend: sglang` to accelerate inference.
[25/03/12] We supported fine-tuning the **[Gemma-3](https://huggingface.co/blog/gemma3)** model.
[25/03/12] We supported fine-tuning the **[Gemma 3](https://huggingface.co/blog/gemma3)** model.
[25/02/24] Announcing **[EasyR1](https://github.com/hiyouga/EasyR1)**, an efficient, scalable and multi-modality RL training framework for efficient GRPO training.
......@@ -122,7 +125,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
[25/02/05] We supported fine-tuning the **[Qwen2-Audio](Qwen/Qwen2-Audio-7B-Instruct)** and **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** on audio understanding tasks.
[25/01/31] We supported fine-tuning the **[DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1)** and **[Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** model.
[25/01/31] We supported fine-tuning the **[DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1)** and **[Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** models.
[25/01/15] We supported **[APOLLO](https://arxiv.org/abs/2412.05270)** optimizer. See [examples](examples/README.md) for usage.
......@@ -238,12 +241,13 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
| [Gemma 3](https://huggingface.co/google) | 1B/4B/12B/27B | gemma3/gemma (1B) |
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/THUDM) | 9B/32B | glm4 |
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
| [Granite 3.0-3.1](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
| [Hunyuan](https://huggingface.co/tencent/) | 7B | hunyuan |
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
| [Kimi-VL](https://huggingface.co/moonshotai) | 16B | kimi_vl |
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3-3.3](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
......@@ -264,9 +268,9 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
| [Phi-3-small](https://huggingface.co/microsoft) | 7B | phi_small |
| [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
| [Qwen/QwQ (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen (1-2.5) (Code/Math/MoE/QwQ)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen2-Audio](https://huggingface.co/Qwen) | 7B | qwen2_audio |
| [Qwen2.5-Omni](https://huggingface.co/Qwen) | 7B | qwen2_omni |
| [Qwen2.5-Omni](https://huggingface.co/Qwen)\*\* | 7B | qwen2_omni |
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/32B/72B | qwen2_vl |
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
......@@ -280,6 +284,10 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
> For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.
>
> Remember to use the **SAME** template in training and inference.
>
> \*: You should install the `transformers` from main branch and use `DISABLE_VERSION_CHECK=1` to skip version check.
>
> \*\*: You need to install a specific version of `transformers` to use the corresponding model.
Please refer to [constants.py](src/llamafactory/extras/constants.py) for a full list of models we supported.
......@@ -383,6 +391,7 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- [COIG-P (en&zh)](https://huggingface.co/datasets/m-a-p/COIG-P)
- [RLHF-V (en)](https://huggingface.co/datasets/openbmb/RLHF-V-Dataset)
- [VLFeedback (en)](https://huggingface.co/datasets/Zhihui/VLFeedback)
- [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
......@@ -552,11 +561,13 @@ pip install .
### Data Preparation
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope / Modelers hub or load the dataset in local disk.
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can use datasets on HuggingFace / ModelScope / Modelers hub, load the dataset in local disk, or specify a path to s3/gcs cloud storage.
> [!NOTE]
> Please update `data/dataset_info.json` to use your custom dataset.
You can also use **[Easy Dataset](https://github.com/ConardLi/easy-dataset)** to create synthetic data for fine-tuning.
### Quickstart
Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively.
......@@ -873,7 +884,7 @@ If you have a project that should be incorporated, please contact via email or c
This repository is licensed under the [Apache-2.0 License](LICENSE).
Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [Llama 4](https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## Citation
......
......@@ -5,7 +5,7 @@
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-349-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Citation](https://img.shields.io/badge/citation-392-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
......@@ -40,10 +40,12 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
- **入门教程**:https://zhuanlan.zhihu.com/p/695287607
- **框架文档**:https://llamafactory.readthedocs.io/zh-cn/latest/
- **框架文档(昇腾 NPU)**:https://ascend.github.io/docs/sources/llamafactory/
- **Colab(免费)**:https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
- **本地机器**:请见[如何使用](#如何使用)
- **PAI-DSW(免费试用)**[Llama3 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | [Qwen2-VL 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl) | [DeepSeek-R1-Distill 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b)
- **Amazon SageMaker**[博客](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
- **Easy Dataset**[数据蒸馏微调](https://buaa-act.feishu.cn/wiki/KY9xwTGs1iqHrRkjXBwcZP9WnL9)
> [!NOTE]
> 除上述链接以外的其他网站均为未经许可的第三方网站,请小心甄别。
......@@ -108,13 +110,15 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
## 更新日志
[25/04/14] 我们支持了 **[GLM-Z1](https://huggingface.co/THUDM/GLM-Z1-9B-0414)** 和 **[Kimi-VL](https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct)** 模型的微调。
[25/04/06] 我们支持了 **[Llama 4](https://ai.meta.com/blog/llama-4-multimodal-intelligence/)** 模型的微调。查看 [PR #7611](https://github.com/hiyouga/LLaMA-Factory/pull/7611) 以使用。
[25/03/31] 我们支持了 **[Qwen2.5 Omni](https://qwenlm.github.io/blog/qwen2.5-omni/)** 模型的微调。查看 [PR #7537](https://github.com/hiyouga/LLaMA-Factory/pull/7537) 以使用。
[25/03/15] 我们支持了 **[SGLang](https://github.com/sgl-project/sglang)** 推理后端,请使用 `infer_backend: sglang` 启用。
[25/03/12] 我们支持了 **[Gemma-3](https://huggingface.co/blog/gemma3)** 模型的微调。
[25/03/12] 我们支持了 **[Gemma 3](https://huggingface.co/blog/gemma3)** 模型的微调。
[25/02/24] 我们宣布开源 **[EasyR1](https://github.com/hiyouga/EasyR1)**,一个高效可扩展的多模态强化学习框架,支持高效的 GRPO 训练。
......@@ -240,17 +244,18 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
| [Gemma 3](https://huggingface.co/google) | 1B/4B/12B/27B | gemma3/gemma (1B) |
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/THUDM) | 9B/32B | glm4 |
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
| [Granite 3.0-3.1](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
| [Hunyuan](https://huggingface.co/tencent/) | 7B | hunyuan |
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
| [Kimi-VL](https://huggingface.co/moonshotai) | 16B | kimi_vl |
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3-3.3](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
| [Llama 3.2 Vision](https://huggingface.co/meta-llama) | 11B/90B | mllama |
| [Llama 4](https://huggingface.co/meta-llama) | 109B/402B | llama4 |
| [Llama 3.2 Vision](https://huggingface.co/meta-llama) | 11B/90B | mllama |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
......@@ -266,9 +271,9 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
| [Phi-3-small](https://huggingface.co/microsoft) | 7B | phi_small |
| [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
| [Qwen/QwQ (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen (1-2.5) (Code/Math/MoE/QwQ)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen2-Audio](https://huggingface.co/Qwen) | 7B | qwen2_audio |
| [Qwen2.5-Omni](https://huggingface.co/Qwen) | 7B | qwen2_omni |
| [Qwen2.5-Omni](https://huggingface.co/Qwen)\*\* | 7B | qwen2_omni |
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/32B/72B | qwen2_vl |
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
......@@ -282,6 +287,10 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
> 对于所有“基座”(Base)模型,`template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Instruct/Chat)模型请务必使用**对应的模板**。
>
> 请务必在训练和推理时采用**完全一致**的模板。
>
> \*:您需要从 main 分支安装 `transformers` 并使用 `DISABLE_VERSION_CHECK=1` 来跳过版本检查。
>
> \*\*:您需要安装特定版本的 `transformers` 以使用该模型。
项目所支持模型的完整列表请参阅 [constants.py](src/llamafactory/extras/constants.py)
......@@ -385,6 +394,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- [COIG-P (en&zh)](https://huggingface.co/datasets/m-a-p/COIG-P)
- [RLHF-V (en)](https://huggingface.co/datasets/openbmb/RLHF-V-Dataset)
- [VLFeedback (en)](https://huggingface.co/datasets/Zhihui/VLFeedback)
- [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
......@@ -404,7 +414,7 @@ huggingface-cli login
## 软硬件依赖
| 必需项 | 至少 | 推荐 |
| 必需项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| python | 3.9 | 3.10 |
| torch | 1.13.1 | 2.6.0 |
......@@ -414,7 +424,7 @@ huggingface-cli login
| peft | 0.14.0 | 0.15.0 |
| trl | 0.8.6 | 0.9.6 |
| 可选项 | 至少 | 推荐 |
| 可选项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.16.4 |
......@@ -560,6 +570,8 @@ pip install .
> [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
您也可以使用 **[Easy Dataset](https://github.com/ConardLi/easy-dataset)** 构建用于微调的合成数据。
### 快速开始
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA **微调****推理****合并**
......@@ -876,7 +888,7 @@ swanlab_run_name: test_run # 可选
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [Llama 4](https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## 引用
......
assets/wechat.jpg

160 KB | W: | H:

assets/wechat.jpg

161 KB | W: | H:

assets/wechat.jpg
assets/wechat.jpg
assets/wechat.jpg
assets/wechat.jpg
  • 2-up
  • Swipe
  • Onion skin
assets/wechat_npu.jpg

167 KB | W: | H:

assets/wechat_npu.jpg

168 KB | W: | H:

assets/wechat_npu.jpg
assets/wechat_npu.jpg
assets/wechat_npu.jpg
assets/wechat_npu.jpg
  • 2-up
  • Swipe
  • Onion skin
......@@ -4,9 +4,10 @@ Currently we support datasets in **alpaca** and **sharegpt** format.
```json
"dataset_name": {
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
"ms_hub_url": "the name of the dataset repository on the Model Scope hub. (if specified, ignore script_url and file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url, file_name and cloud_file_name)",
"ms_hub_url": "the name of the dataset repository on the Model Scope hub. (if specified, ignore script_url, file_name and cloud_file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name and cloud_file_name)",
"cloud_file_name": "the name of the dataset file in s3/gcs cloud storage. (if specified, ignore file_name)",
"file_name": "the name of the dataset folder or dataset file in this directory. (required if above are not specified)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"ranking": "whether the dataset is a preference dataset or not. (default: False)",
......@@ -85,7 +86,7 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh
### Pre-training Dataset
- [Example dataset](c4_demo.json)
- [Example dataset](c4_demo.jsonl)
In pre-training, only the `text` column will be used for model learning.
......
......@@ -85,7 +85,7 @@
### 预训练数据集
- [样例数据集](c4_demo.json)
- [样例数据集](c4_demo.jsonl)
在预训练时,只有 `text` 列中的内容会用于模型学习。
......
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -66,6 +66,21 @@
"assistant_tag": "assistant"
}
},
"mllm_video_audio_demo": {
"file_name": "mllm_video_audio_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"videos": "videos",
"audios": "audios"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"alpaca_en": {
"hf_hub_url": "llamafactory/alpaca_en",
"ms_hub_url": "llamafactory/alpaca_en",
......@@ -512,6 +527,16 @@
"rejected": "rejected"
}
},
"coig_p": {
"hf_hub_url": "m-a-p/COIG-P",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"rlhf_v": {
"hf_hub_url": "llamafactory/RLHF-V",
"ranking": true,
......@@ -607,7 +632,7 @@
}
},
"c4_demo": {
"file_name": "c4_demo.json",
"file_name": "c4_demo.jsonl",
"columns": {
"prompt": "text"
}
......
[
{
"messages": [
{
"content": "<video><audio>What is the video describing?",
"role": "user"
},
{
"content": "A girl who is drawing a picture of a guitar and feel nervous.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/4.mp4"
],
"audios": [
"mllm_demo_data/4.mp3"
]
},
{
"messages": [
{
"content": "<video><audio>What does this girl say?",
"role": "user"
},
{
"content": "She says: 'Hello! Take a look at what am I drawing!'",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/4.mp4"
],
"audios": [
"mllm_demo_data/4.mp3"
]
},
{
"messages": [
{
"content": "<video><audio>What is this girl drawing with?",
"role": "user"
},
{
"content": "She is drawing with an iPad.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/4.mp4"
],
"audios": [
"mllm_demo_data/4.mp3"
]
}
]
FROM image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.4.1-ubuntu22.04-dtk25.04-py3.10
\ No newline at end of file
# Default use the NVIDIA official image with PyTorch 2.6.0
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/index.html
ARG BASE_IMAGE=nvcr.io/nvidia/pytorch:24.12-py3
FROM ${BASE_IMAGE}
# Define environments
ENV MAX_JOBS=4
ENV FLASH_ATTENTION_FORCE_BUILD=TRUE
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
# Define installation arguments
ARG INSTALL_BNB=false
ARG INSTALL_VLLM=false
ARG INSTALL_DEEPSPEED=false
ARG INSTALL_FLASHATTN=false
ARG INSTALL_LIGER_KERNEL=false
ARG INSTALL_HQQ=false
ARG INSTALL_EETQ=false
ARG PIP_INDEX=https://pypi.org/simple
ARG HTTP_PROXY=
# Set the working directory
WORKDIR /app
# Set http proxy
RUN if [ -n "$HTTP_PROXY" ]; then \
echo "Configuring proxy..."; \
export http_proxy=$HTTP_PROXY; \
export https_proxy=$HTTP_PROXY; \
fi
# Install the requirements
COPY requirements.txt /app
RUN pip config set global.index-url "$PIP_INDEX" && \
pip config set global.extra-index-url "$PIP_INDEX" && \
python -m pip install --upgrade pip && \
if [ -n "$HTTP_PROXY" ]; then \
python -m pip install --proxy=$HTTP_PROXY -r requirements.txt; \
else \
python -m pip install -r requirements.txt; \
fi
# Copy the rest of the application into the image
COPY . /app
# Install the LLaMA Factory
RUN EXTRA_PACKAGES="metrics"; \
if [ "$INSTALL_BNB" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},bitsandbytes"; \
fi; \
if [ "$INSTALL_VLLM" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},vllm"; \
fi; \
if [ "$INSTALL_DEEPSPEED" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
fi; \
if [ "$INSTALL_LIGER_KERNEL" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},liger-kernel"; \
fi; \
if [ "$INSTALL_HQQ" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},hqq"; \
fi; \
if [ "$INSTALL_EETQ" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},eetq"; \
fi; \
if [ -n "$HTTP_PROXY" ]; then \
pip install --proxy=$HTTP_PROXY -e ".[$EXTRA_PACKAGES]"; \
else \
pip install -e ".[$EXTRA_PACKAGES]"; \
fi
# Rebuild flash attention
RUN pip uninstall -y transformer-engine flash-attn && \
if [ "$INSTALL_FLASHATTN" == "true" ]; then \
pip uninstall -y ninja && \
if [ -n "$HTTP_PROXY" ]; then \
pip install --proxy=$HTTP_PROXY ninja && \
pip install --proxy=$HTTP_PROXY --no-cache-dir flash-attn --no-build-isolation; \
else \
pip install ninja && \
pip install --no-cache-dir flash-attn --no-build-isolation; \
fi; \
fi
# Unset http proxy
RUN if [ -n "$HTTP_PROXY" ]; then \
unset http_proxy; \
unset https_proxy; \
fi
# Set up volumes
VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output" ]
# Expose port 7860 for the LLaMA Board
ENV GRADIO_SERVER_PORT 7860
EXPOSE 7860
# Expose port 8000 for the API service
ENV API_PORT 8000
EXPOSE 8000
services:
llamafactory:
build:
dockerfile: ./docker/docker-cuda/Dockerfile
context: ../..
args:
INSTALL_BNB: "false"
INSTALL_VLLM: "false"
INSTALL_DEEPSPEED: "false"
INSTALL_FLASHATTN: "false"
INSTALL_LIGER_KERNEL: "false"
INSTALL_HQQ: "false"
INSTALL_EETQ: "false"
PIP_INDEX: https://pypi.org/simple
container_name: llamafactory
volumes:
- ../../hf_cache:/root/.cache/huggingface
- ../../ms_cache:/root/.cache/modelscope
- ../../om_cache:/root/.cache/openmind
- ../../data:/app/data
- ../../output:/app/output
ports:
- "7860:7860"
- "8000:8000"
ipc: host
tty: true
shm_size: "16gb"
stdin_open: true
command: bash
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: "all"
capabilities: [gpu]
restart: unless-stopped
# Use the Ubuntu 22.04 image with CANN 8.0.rc1
# More versions can be found at https://hub.docker.com/r/ascendai/cann/tags
# FROM ascendai/cann:8.0.rc1-910-ubuntu22.04-py3.8
FROM ascendai/cann:8.0.0-910b-ubuntu22.04-py3.10
# FROM ascendai/cann:8.0.rc1-910-openeuler22.03-py3.8
# FROM ascendai/cann:8.0.rc1-910b-openeuler22.03-py3.8
# Define environments
ENV DEBIAN_FRONTEND=noninteractive
# Define installation arguments
ARG INSTALL_DEEPSPEED=false
ARG PIP_INDEX=https://pypi.org/simple
ARG TORCH_INDEX=https://download.pytorch.org/whl/cpu
ARG HTTP_PROXY=
# Set the working directory
WORKDIR /app
# Set http proxy
RUN if [ -n "$HTTP_PROXY" ]; then \
echo "Configuring proxy..."; \
export http_proxy=$HTTP_PROXY; \
export https_proxy=$HTTP_PROXY; \
fi
# Install the requirements
COPY requirements.txt /app
RUN pip config set global.index-url "$PIP_INDEX" && \
pip config set global.extra-index-url "$TORCH_INDEX" && \
python -m pip install --upgrade pip && \
if [ -n "$HTTP_PROXY" ]; then \
python -m pip install --proxy=$HTTP_PROXY -r requirements.txt; \
else \
python -m pip install -r requirements.txt; \
fi
# Copy the rest of the application into the image
COPY . /app
# Install the LLaMA Factory
RUN EXTRA_PACKAGES="torch-npu,metrics"; \
if [ "$INSTALL_DEEPSPEED" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
fi; \
if [ -n "$HTTP_PROXY" ]; then \
pip install --proxy=$HTTP_PROXY -e ".[$EXTRA_PACKAGES]"; \
else \
pip install -e ".[$EXTRA_PACKAGES]"; \
fi
# Unset http proxy
RUN if [ -n "$HTTP_PROXY" ]; then \
unset http_proxy; \
unset https_proxy; \
fi
# Set up volumes
VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output" ]
# Expose port 7860 for the LLaMA Board
ENV GRADIO_SERVER_PORT 7860
EXPOSE 7860
# Expose port 8000 for the API service
ENV API_PORT 8000
EXPOSE 8000
services:
llamafactory:
build:
dockerfile: ./docker/docker-npu/Dockerfile
context: ../..
args:
INSTALL_DEEPSPEED: "false"
PIP_INDEX: https://pypi.org/simple
container_name: llamafactory
volumes:
- ../../hf_cache:/root/.cache/huggingface
- ../../ms_cache:/root/.cache/modelscope
- ../../om_cache:/root/.cache/openmind
- ../../data:/app/data
- ../../output:/app/output
- /usr/local/dcmi:/usr/local/dcmi
- /usr/local/bin/npu-smi:/usr/local/bin/npu-smi
- /usr/local/Ascend/driver:/usr/local/Ascend/driver
- /etc/ascend_install.info:/etc/ascend_install.info
ports:
- "7860:7860"
- "8000:8000"
ipc: host
tty: true
shm_size: "16gb"
stdin_open: true
command: bash
devices:
- /dev/davinci0
- /dev/davinci_manager
- /dev/devmm_svm
- /dev/hisi_hdc
restart: unless-stopped
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment