"CONTRIBUTING.md" did not exist on "2f0d89e765051fc9e26fb4c52e5ad91bbb0e7e0b"
Commit 24534501 authored by mashun1's avatar mashun1
Browse files

parallel_tool

parent c4ba4563
...@@ -20,7 +20,7 @@ from llamafactory.chat import ChatModel ...@@ -20,7 +20,7 @@ from llamafactory.chat import ChatModel
from llamafactory.extras.packages import is_sglang_available from llamafactory.extras.packages import is_sglang_available
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct" MODEL_NAME = "Qwen/Qwen2.5-0.5B"
INFER_ARGS = { INFER_ARGS = {
......
...@@ -16,6 +16,7 @@ import pytest ...@@ -16,6 +16,7 @@ import pytest
import torch import torch
from transformers import AutoConfig, AutoModelForVision2Seq from transformers import AutoConfig, AutoModelForVision2Seq
from llamafactory.extras.packages import is_transformers_version_greater_than
from llamafactory.hparams import FinetuningArguments, ModelArguments from llamafactory.hparams import FinetuningArguments, ModelArguments
from llamafactory.model.adapter import init_adapter from llamafactory.model.adapter import init_adapter
...@@ -45,10 +46,12 @@ def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bo ...@@ -45,10 +46,12 @@ def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bo
assert param.requires_grad != freeze_language_model assert param.requires_grad != freeze_language_model
@pytest.mark.parametrize("freeze_vision_tower", (False, True)) @pytest.mark.parametrize("freeze_vision_tower,freeze_language_model", ((False, False), (False, True), (True, False)))
def test_visual_lora(freeze_vision_tower: bool): def test_visual_lora(freeze_vision_tower: bool, freeze_language_model: bool):
model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct") model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct")
finetuning_args = FinetuningArguments(finetuning_type="lora", freeze_vision_tower=freeze_vision_tower) finetuning_args = FinetuningArguments(
finetuning_type="lora", freeze_vision_tower=freeze_vision_tower, freeze_language_model=freeze_language_model
)
config = AutoConfig.from_pretrained(model_args.model_name_or_path) config = AutoConfig.from_pretrained(model_args.model_name_or_path)
with torch.device("meta"): with torch.device("meta"):
model = AutoModelForVision2Seq.from_config(config) model = AutoModelForVision2Seq.from_config(config)
...@@ -61,10 +64,15 @@ def test_visual_lora(freeze_vision_tower: bool): ...@@ -61,10 +64,15 @@ def test_visual_lora(freeze_vision_tower: bool):
else: else:
frozen_params.add(name) frozen_params.add(name)
if freeze_vision_tower: if is_transformers_version_greater_than("4.52.0"):
assert "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" not in trainable_params visual_param_name = "base_model.model.model.visual.blocks.0.attn.qkv.lora_A.default.weight"
language_param_name = "base_model.model.model.language_model.layers.0.self_attn.q_proj.lora_A.default.weight"
merger_param_name = "base_model.model.model.visual.merger.lora_A.default.weight"
else: else:
assert "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" in trainable_params visual_param_name = "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight"
language_param_name = "base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight"
merger_param_name = "base_model.model.visual.merger.lora_A.default.weight"
assert "merger" not in trainable_params assert (visual_param_name in trainable_params) != freeze_vision_tower
assert "base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight" in trainable_params assert (language_param_name in trainable_params) != freeze_language_model
assert (merger_param_name in trainable_params) is False
# change if test fails or cache is outdated # change if test fails or cache is outdated
0.9.3.106 0.9.3.107
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment