attention.py 3.52 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING

from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_available
from transformers.utils.versions import require_version

from ...extras.logging import get_logger


if TYPE_CHECKING:
    from transformers import PretrainedConfig

    from ...hparams import ModelArguments


logger = get_logger(__name__)


def configure_attn_implementation(
    config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool
) -> None:
    if getattr(config, "model_type", None) == "gemma2" and is_trainable:
        if model_args.flash_attn == "auto" or model_args.flash_attn == "fa2":
            if is_flash_attn_2_available():
                require_version("transformers>=4.42.4", "To fix: pip install transformers>=4.42.4")
                require_version("flash_attn>=2.6.3", "To fix: pip install flash_attn>=2.6.3")
luopl's avatar
luopl committed
40
41
42
                if model_args.flash_attn != "fa2":
                    logger.warning("Gemma-2 should use flash attention 2, change `flash_attn` to fa2.")
                    model_args.flash_attn = "fa2"
chenych's avatar
chenych committed
43
            else:
luopl's avatar
luopl committed
44
                logger.warning("FlashAttention-2 is not installed, use eager attention.")
chenych's avatar
chenych committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
                model_args.flash_attn = "disabled"
        elif model_args.flash_attn == "sdpa":
            logger.warning("Gemma-2 should use soft-capping attention, while the SDPA attention does not support it.")

    if model_args.flash_attn == "auto":
        return

    elif model_args.flash_attn == "disabled":
        requested_attn_implementation = "eager"

    elif model_args.flash_attn == "sdpa":
        if not is_torch_sdpa_available():
            logger.warning("torch>=2.1.1 is required for SDPA attention.")
            return

        requested_attn_implementation = "sdpa"
    elif model_args.flash_attn == "fa2":
        if not is_flash_attn_2_available():
            logger.warning("FlashAttention-2 is not installed.")
            return

        requested_attn_implementation = "flash_attention_2"
    else:
        raise NotImplementedError("Unknown attention type: {}".format(model_args.flash_attn))

    if getattr(config, "model_type", None) == "internlm2":  # special case for custom models
        setattr(config, "attn_implementation", requested_attn_implementation)
    else:
        setattr(config, "_attn_implementation", requested_attn_implementation)


def print_attn_implementation(config: "PretrainedConfig") -> None:
    if getattr(config, "model_type", None) == "internlm2":  # special case for custom models
        attn_implementation = getattr(config, "attn_implementation", None)
    else:
        attn_implementation = getattr(config, "_attn_implementation", None)

    if attn_implementation == "flash_attention_2":
        logger.info("Using FlashAttention-2 for faster training and inference.")
    elif attn_implementation == "sdpa":
        logger.info("Using torch SDPA for faster training and inference.")
    else:
        logger.info("Using vanilla attention implementation.")