vllm_engine.py 9.48 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import uuid
from typing import TYPE_CHECKING, Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence, Union

luopl's avatar
luopl committed
18
19
from typing_extensions import override

chenych's avatar
chenych committed
20
from ..data import get_template_and_fix_tokenizer
luopl's avatar
luopl committed
21
from ..extras.constants import IMAGE_PLACEHOLDER
chenych's avatar
chenych committed
22
23
from ..extras.logging import get_logger
from ..extras.misc import get_device_count
luopl's avatar
luopl committed
24
from ..extras.packages import is_pillow_available, is_vllm_available
chenych's avatar
chenych committed
25
26
27
28
29
30
from ..model import load_config, load_tokenizer
from ..model.model_utils.quantization import QuantizationMethod
from ..model.model_utils.visual import LlavaMultiModalProjectorForYiVLForVLLM
from .base_engine import BaseEngine, Response


luopl's avatar
luopl committed
31
32
33
34
35
if is_pillow_available():
    from PIL import Image
    from PIL.Image import Image as ImageObject


chenych's avatar
chenych committed
36
37
38
39
40
41
if is_vllm_available():
    from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams
    from vllm.lora.request import LoRARequest


if TYPE_CHECKING:
luopl's avatar
luopl committed
42
    from ..data.mm_plugin import ImageInput, VideoInput
chenych's avatar
chenych committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments


logger = get_logger(__name__)


class VllmEngine(BaseEngine):
    def __init__(
        self,
        model_args: "ModelArguments",
        data_args: "DataArguments",
        finetuning_args: "FinetuningArguments",
        generating_args: "GeneratingArguments",
    ) -> None:
        config = load_config(model_args)  # may download model from ms hub
        if getattr(config, "quantization_config", None):  # gptq models should use float16
            quantization_config: Dict[str, Any] = getattr(config, "quantization_config", None)
            quant_method = quantization_config.get("quant_method", "")
            if quant_method == QuantizationMethod.GPTQ and model_args.infer_dtype == "auto":
                model_args.infer_dtype = "float16"

        self.can_generate = finetuning_args.stage == "sft"
        tokenizer_module = load_tokenizer(model_args)
        self.tokenizer = tokenizer_module["tokenizer"]
        self.processor = tokenizer_module["processor"]
        self.tokenizer.padding_side = "left"
luopl's avatar
luopl committed
69
        self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args)
chenych's avatar
chenych committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        self.generating_args = generating_args.to_dict()

        engine_args = {
            "model": model_args.model_name_or_path,
            "trust_remote_code": True,
            "download_dir": model_args.cache_dir,
            "dtype": model_args.infer_dtype,
            "max_model_len": model_args.vllm_maxlen,
            "tensor_parallel_size": get_device_count() or 1,
            "gpu_memory_utilization": model_args.vllm_gpu_util,
            "disable_log_stats": True,
            "disable_log_requests": True,
            "enforce_eager": model_args.vllm_enforce_eager,
            "enable_lora": model_args.adapter_name_or_path is not None,
            "max_lora_rank": model_args.vllm_max_lora_rank,
        }

luopl's avatar
luopl committed
87
88
        if getattr(config, "is_yi_vl_derived_model", None):
            import vllm.model_executor.models.llava
chenych's avatar
chenych committed
89

luopl's avatar
luopl committed
90
91
            logger.info("Detected Yi-VL model, applying projector patch.")
            vllm.model_executor.models.llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVLForVLLM
chenych's avatar
chenych committed
92
93
94
95
96
97
98
99
100
101
102
103

        self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args))
        if model_args.adapter_name_or_path is not None:
            self.lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
        else:
            self.lora_request = None

    async def _generate(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
luopl's avatar
luopl committed
104
105
        image: Optional["ImageInput"] = None,
        video: Optional["VideoInput"] = None,
chenych's avatar
chenych committed
106
107
108
        **input_kwargs,
    ) -> AsyncIterator["RequestOutput"]:
        request_id = "chatcmpl-{}".format(uuid.uuid4().hex)
luopl's avatar
luopl committed
109
110
111
        if image is not None:
            if IMAGE_PLACEHOLDER not in messages[0]["content"]:
                messages[0]["content"] = IMAGE_PLACEHOLDER + messages[0]["content"]
chenych's avatar
chenych committed
112
113
114

        paired_messages = messages + [{"role": "assistant", "content": ""}]
        system = system or self.generating_args["default_system"]
luopl's avatar
luopl committed
115
        prompt_ids, _ = self.template.encode_oneturn(self.tokenizer, paired_messages, system, tools)
chenych's avatar
chenych committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        prompt_length = len(prompt_ids)

        use_beam_search: bool = self.generating_args["num_beams"] > 1
        temperature: Optional[float] = input_kwargs.pop("temperature", None)
        top_p: Optional[float] = input_kwargs.pop("top_p", None)
        top_k: Optional[float] = input_kwargs.pop("top_k", None)
        num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
        repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
        length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
        max_length: Optional[int] = input_kwargs.pop("max_length", None)
        max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
        stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)

        if "max_new_tokens" in self.generating_args:
            max_tokens = self.generating_args["max_new_tokens"]
        elif "max_length" in self.generating_args:
            if self.generating_args["max_length"] > prompt_length:
                max_tokens = self.generating_args["max_length"] - prompt_length
            else:
                max_tokens = 1

        if max_length:
            max_tokens = max_length - prompt_length if max_length > prompt_length else 1

        if max_new_tokens:
            max_tokens = max_new_tokens

        sampling_params = SamplingParams(
            n=num_return_sequences,
            repetition_penalty=(
                repetition_penalty if repetition_penalty is not None else self.generating_args["repetition_penalty"]
            )
            or 1.0,  # repetition_penalty must > 0
            temperature=temperature if temperature is not None else self.generating_args["temperature"],
            top_p=(top_p if top_p is not None else self.generating_args["top_p"]) or 1.0,  # top_p must > 0
            top_k=top_k if top_k is not None else self.generating_args["top_k"],
            use_beam_search=use_beam_search,
            length_penalty=length_penalty if length_penalty is not None else self.generating_args["length_penalty"],
            stop=stop,
            stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
            max_tokens=max_tokens,
            skip_special_tokens=True,
        )

luopl's avatar
luopl committed
160
161
162
163
164
165
166
167
168
169
170
        if image is not None:  # add image features
            if not isinstance(image, (str, ImageObject)):
                raise ValueError("Expected image input is a path or PIL.Image, but got {}.".format(type(image)))

            if isinstance(image, str):
                image = Image.open(image).convert("RGB")

            multi_modal_data = {"image": image}
        else:
            multi_modal_data = None

chenych's avatar
chenych committed
171
172
173
174
175
176
177
178
        result_generator = self.model.generate(
            inputs={"prompt_token_ids": prompt_ids, "multi_modal_data": multi_modal_data},
            sampling_params=sampling_params,
            request_id=request_id,
            lora_request=self.lora_request,
        )
        return result_generator

luopl's avatar
luopl committed
179
    @override
chenych's avatar
chenych committed
180
181
182
183
184
    async def chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
luopl's avatar
luopl committed
185
186
        image: Optional["ImageInput"] = None,
        video: Optional["VideoInput"] = None,
chenych's avatar
chenych committed
187
188
189
        **input_kwargs,
    ) -> List["Response"]:
        final_output = None
luopl's avatar
luopl committed
190
        generator = await self._generate(messages, system, tools, image, video, **input_kwargs)
chenych's avatar
chenych committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        async for request_output in generator:
            final_output = request_output

        results = []
        for output in final_output.outputs:
            results.append(
                Response(
                    response_text=output.text,
                    response_length=len(output.token_ids),
                    prompt_length=len(final_output.prompt_token_ids),
                    finish_reason=output.finish_reason,
                )
            )

        return results

luopl's avatar
luopl committed
207
    @override
chenych's avatar
chenych committed
208
209
210
211
212
    async def stream_chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
luopl's avatar
luopl committed
213
214
        image: Optional["ImageInput"] = None,
        video: Optional["VideoInput"] = None,
chenych's avatar
chenych committed
215
216
217
        **input_kwargs,
    ) -> AsyncGenerator[str, None]:
        generated_text = ""
luopl's avatar
luopl committed
218
        generator = await self._generate(messages, system, tools, image, video, **input_kwargs)
chenych's avatar
chenych committed
219
220
221
222
223
        async for result in generator:
            delta_text = result.outputs[0].text[len(generated_text) :]
            generated_text = result.outputs[0].text
            yield delta_text

luopl's avatar
luopl committed
224
    @override
chenych's avatar
chenych committed
225
226
227
228
229
230
    async def get_scores(
        self,
        batch_input: List[str],
        **input_kwargs,
    ) -> List[float]:
        raise NotImplementedError("vLLM engine does not support get_scores.")