llama_pro.py 4.84 KB
Newer Older
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
1
# coding=utf-8
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2024 Tencent Inc. and the LlamaFactory team.
#
# This code is inspired by the Tencent's LLaMA-Pro library.
# https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
18
19
20
21

import json
import os
from collections import OrderedDict
chenych's avatar
chenych committed
22
from typing import TYPE_CHECKING
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

import fire
import torch
from safetensors.torch import save_file
from tqdm import tqdm
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from transformers.modeling_utils import (
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
    shard_checkpoint,
)


if TYPE_CHECKING:
    from transformers import PretrainedConfig, PreTrainedModel


def change_name(name: str, old_index: int, new_index: int) -> str:
    return name.replace(".{:d}.".format(old_index), ".{:d}.".format(new_index))


def block_expansion(
    model_name_or_path: str,
    output_dir: str,
    num_expand: int,
chenych's avatar
chenych committed
50
51
    shard_size: str = "2GB",
    save_safetensors: bool = True,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
52
):
chenych's avatar
chenych committed
53
54
55
56
    r"""
    Performs block expansion for LLaMA, Mistral, Qwen1.5 or Yi models.
    Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8
    """
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path)
    num_layers = getattr(config, "num_hidden_layers")
    setattr(config, "num_hidden_layers", num_layers + num_expand)
    config.save_pretrained(output_dir)

    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
    tokenizer.save_pretrained(output_dir)

    config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path)  # load the original one
    if save_safetensors:
        setattr(config, "tie_word_embeddings", False)  # safetensors does not allow shared weights

    model: "PreTrainedModel" = AutoModelForCausalLM.from_pretrained(
        model_name_or_path,
        config=config,
        torch_dtype="auto",
        trust_remote_code=True,
        low_cpu_mem_usage=True,
    )
    state_dict = model.state_dict()

    if num_layers % num_expand != 0:
        raise ValueError("`num_layers` {} should be divisible by `num_expand` {}.".format(num_layers, num_expand))

    split = num_layers // num_expand
    layer_cnt = 0
    output_state_dict = OrderedDict()
    for i in range(num_layers):
        for key, value in state_dict.items():
            if ".{:d}.".format(i) in key:
                output_state_dict[change_name(key, i, layer_cnt)] = value

        print("Add layer {} copied from layer {}".format(layer_cnt, i))
        layer_cnt += 1
        if (i + 1) % split == 0:
            for key, value in state_dict.items():
                if ".{:d}.".format(i) in key:
                    if "down_proj" in key or "o_proj" in key:
                        output_state_dict[change_name(key, i, layer_cnt)] = torch.zeros_like(value)
                    else:
                        output_state_dict[change_name(key, i, layer_cnt)] = torch.clone(value)

            print("Add layer {} expanded from layer {}".format(layer_cnt, i))
            layer_cnt += 1

    for key, value in state_dict.items():
        if key not in output_state_dict:
            output_state_dict[key] = value

    weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
    shards, index = shard_checkpoint(output_state_dict, max_shard_size=shard_size, weights_name=weights_name)

    for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
        if save_safetensors:
            save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
        else:
            torch.save(shard, os.path.join(output_dir, shard_file))

    if index is None:
        print("Model weights saved in {}".format(os.path.join(output_dir, weights_name)))
    else:
        index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
        with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
            json.dump(index, f, indent=2, sort_keys=True)
        print("Model weights saved in {}".format(output_dir))

chenych's avatar
chenych committed
123
124
125
126
127
    print("- Fine-tune this model with:")
    print("model_name_or_path: {}".format(output_dir))
    print("finetuning_type: freeze")
    print("freeze_trainable_layers: {}".format(num_expand))
    print("use_llama_pro: true")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
128
129
130
131


if __name__ == "__main__":
    fire.Fire(block_expansion)