control.py 7.99 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
chenych's avatar
chenych committed
17
from typing import Any, Optional
chenych's avatar
chenych committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

from transformers.trainer_utils import get_last_checkpoint

from ..extras.constants import (
    CHECKPOINT_NAMES,
    PEFT_METHODS,
    RUNNING_LOG,
    STAGES_USE_PAIR_DATA,
    SWANLAB_CONFIG,
    TRAINER_LOG,
    TRAINING_STAGES,
)
from ..extras.packages import is_gradio_available, is_matplotlib_available
from ..extras.ploting import gen_loss_plot
from ..model import QuantizationMethod
from .common import DEFAULT_CONFIG_DIR, DEFAULT_DATA_DIR, get_model_path, get_save_dir, get_template, load_dataset_info
from .locales import ALERTS


if is_gradio_available():
    import gradio as gr


chenych's avatar
chenych committed
41
42
43
44
45
46
47
48
49
def switch_hub(hub_name: str) -> None:
    r"""Switch model hub.

    Inputs: top.hub_name
    """
    os.environ["USE_MODELSCOPE_HUB"] = "1" if hub_name == "modelscope" else "0"
    os.environ["USE_OPENMIND_HUB"] = "1" if hub_name == "openmind" else "0"


chenych's avatar
chenych committed
50
def can_quantize(finetuning_type: str) -> "gr.Dropdown":
chenych's avatar
chenych committed
51
    r"""Judge if the quantization is available in this finetuning type.
chenych's avatar
chenych committed
52
53
54
55
56
57
58
59
60
61
62

    Inputs: top.finetuning_type
    Outputs: top.quantization_bit
    """
    if finetuning_type not in PEFT_METHODS:
        return gr.Dropdown(value="none", interactive=False)
    else:
        return gr.Dropdown(interactive=True)


def can_quantize_to(quantization_method: str) -> "gr.Dropdown":
chenych's avatar
chenych committed
63
    r"""Get the available quantization bits.
chenych's avatar
chenych committed
64
65
66
67

    Inputs: top.quantization_method
    Outputs: top.quantization_bit
    """
chenych's avatar
chenych committed
68
    if quantization_method == QuantizationMethod.BNB:
chenych's avatar
chenych committed
69
        available_bits = ["none", "8", "4"]
chenych's avatar
chenych committed
70
    elif quantization_method == QuantizationMethod.HQQ:
chenych's avatar
chenych committed
71
        available_bits = ["none", "8", "6", "5", "4", "3", "2", "1"]
chenych's avatar
chenych committed
72
    elif quantization_method == QuantizationMethod.EETQ:
chenych's avatar
chenych committed
73
74
75
76
77
        available_bits = ["none", "8"]

    return gr.Dropdown(choices=available_bits)


chenych's avatar
chenych committed
78
79
def change_stage(training_stage: str = list(TRAINING_STAGES.keys())[0]) -> tuple[list[str], bool]:
    r"""Modify states after changing the training stage.
chenych's avatar
chenych committed
80
81
82
83
84
85
86

    Inputs: train.training_stage
    Outputs: train.dataset, train.packing
    """
    return [], TRAINING_STAGES[training_stage] == "pt"


chenych's avatar
chenych committed
87
88
def get_model_info(model_name: str) -> tuple[str, str]:
    r"""Get the necessary information of this model.
chenych's avatar
chenych committed
89
90
91
92
93
94
95

    Inputs: top.model_name
    Outputs: top.model_path, top.template
    """
    return get_model_path(model_name), get_template(model_name)


chenych's avatar
chenych committed
96
97
98
99
100
101
102
103
104
105
106
def check_template(lang: str, template: str) -> None:
    r"""Check if an instruct model is used.

    Please use queue=True to show the warning message.

    Inputs: top.lang, top.template
    """
    if template == "default":
        gr.Warning(ALERTS["warn_no_instruct"][lang])


chenych's avatar
chenych committed
107
108
def get_trainer_info(lang: str, output_path: os.PathLike, do_train: bool) -> tuple[str, "gr.Slider", dict[str, Any]]:
    r"""Get training infomation for monitor.
chenych's avatar
chenych committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    If do_train is True:
        Inputs: top.lang, train.output_path
        Outputs: train.output_box, train.progress_bar, train.loss_viewer, train.swanlab_link
    If do_train is False:
        Inputs: top.lang, eval.output_path
        Outputs: eval.output_box, eval.progress_bar, None, None
    """
    running_log = ""
    running_progress = gr.Slider(visible=False)
    running_info = {}

    running_log_path = os.path.join(output_path, RUNNING_LOG)
    if os.path.isfile(running_log_path):
        with open(running_log_path, encoding="utf-8") as f:
chenych's avatar
chenych committed
124
            running_log = "```\n" + f.read()[-20000:] + "\n```\n"  # avoid lengthy log
chenych's avatar
chenych committed
125
126
127

    trainer_log_path = os.path.join(output_path, TRAINER_LOG)
    if os.path.isfile(trainer_log_path):
chenych's avatar
chenych committed
128
        trainer_log: list[dict[str, Any]] = []
chenych's avatar
chenych committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        with open(trainer_log_path, encoding="utf-8") as f:
            for line in f:
                trainer_log.append(json.loads(line))

        if len(trainer_log) != 0:
            latest_log = trainer_log[-1]
            percentage = latest_log["percentage"]
            label = "Running {:d}/{:d}: {} < {}".format(
                latest_log["current_steps"],
                latest_log["total_steps"],
                latest_log["elapsed_time"],
                latest_log["remaining_time"],
            )
            running_progress = gr.Slider(label=label, value=percentage, visible=True)

            if do_train and is_matplotlib_available():
                running_info["loss_viewer"] = gr.Plot(gen_loss_plot(trainer_log))

    swanlab_config_path = os.path.join(output_path, SWANLAB_CONFIG)
    if os.path.isfile(swanlab_config_path):
        with open(swanlab_config_path, encoding="utf-8") as f:
            swanlab_public_config = json.load(f)
            swanlab_link = swanlab_public_config["cloud"]["experiment_url"]
            if swanlab_link is not None:
                running_info["swanlab_link"] = gr.Markdown(
                    ALERTS["info_swanlab_link"][lang] + swanlab_link, visible=True
                )

    return running_log, running_progress, running_info


def list_checkpoints(model_name: str, finetuning_type: str) -> "gr.Dropdown":
chenych's avatar
chenych committed
161
    r"""List all available checkpoints.
chenych's avatar
chenych committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

    Inputs: top.model_name, top.finetuning_type
    Outputs: top.checkpoint_path
    """
    checkpoints = []
    if model_name:
        save_dir = get_save_dir(model_name, finetuning_type)
        if save_dir and os.path.isdir(save_dir):
            for checkpoint in os.listdir(save_dir):
                if os.path.isdir(os.path.join(save_dir, checkpoint)) and any(
                    os.path.isfile(os.path.join(save_dir, checkpoint, name)) for name in CHECKPOINT_NAMES
                ):
                    checkpoints.append(checkpoint)

    if finetuning_type in PEFT_METHODS:
        return gr.Dropdown(value=[], choices=checkpoints, multiselect=True)
    else:
        return gr.Dropdown(value=None, choices=checkpoints, multiselect=False)


def list_config_paths(current_time: str) -> "gr.Dropdown":
chenych's avatar
chenych committed
183
    r"""List all the saved configuration files.
chenych's avatar
chenych committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197

    Inputs: train.current_time
    Outputs: train.config_path
    """
    config_files = [f"{current_time}.yaml"]
    if os.path.isdir(DEFAULT_CONFIG_DIR):
        for file_name in os.listdir(DEFAULT_CONFIG_DIR):
            if file_name.endswith(".yaml") and file_name not in config_files:
                config_files.append(file_name)

    return gr.Dropdown(choices=config_files)


def list_datasets(dataset_dir: str = None, training_stage: str = list(TRAINING_STAGES.keys())[0]) -> "gr.Dropdown":
chenych's avatar
chenych committed
198
    r"""List all available datasets in the dataset dir for the training stage.
chenych's avatar
chenych committed
199
200
201
202
203
204
205
206
207
208
209

    Inputs: *.dataset_dir, *.training_stage
    Outputs: *.dataset
    """
    dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR)
    ranking = TRAINING_STAGES[training_stage] in STAGES_USE_PAIR_DATA
    datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking]
    return gr.Dropdown(choices=datasets)


def list_output_dirs(model_name: Optional[str], finetuning_type: str, current_time: str) -> "gr.Dropdown":
chenych's avatar
chenych committed
210
    r"""List all the directories that can resume from.
chenych's avatar
chenych committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224

    Inputs: top.model_name, top.finetuning_type, train.current_time
    Outputs: train.output_dir
    """
    output_dirs = [f"train_{current_time}"]
    if model_name:
        save_dir = get_save_dir(model_name, finetuning_type)
        if save_dir and os.path.isdir(save_dir):
            for folder in os.listdir(save_dir):
                output_dir = os.path.join(save_dir, folder)
                if os.path.isdir(output_dir) and get_last_checkpoint(output_dir) is not None:
                    output_dirs.append(folder)

    return gr.Dropdown(choices=output_dirs)