test_toolcall.py 3.01 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
luopl's avatar
luopl committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os

from openai import OpenAI
from transformers.utils.versions import require_version


require_version("openai>=1.5.0", "To fix: pip install openai>=1.5.0")


chenych's avatar
chenych committed
25
def calculate_gpa(grades: list[str], hours: list[int]) -> float:
luopl's avatar
luopl committed
26
27
28
29
30
31
32
33
34
35
    grade_to_score = {"A": 4, "B": 3, "C": 2}
    total_score, total_hour = 0, 0
    for grade, hour in zip(grades, hours):
        total_score += grade_to_score[grade] * hour
        total_hour += hour
    return round(total_score / total_hour, 2)


def main():
    client = OpenAI(
chenych's avatar
chenych committed
36
37
        api_key="{}".format(os.getenv("API_KEY", "0")),
        base_url="http://localhost:{}/v1".format(os.getenv("API_PORT", 8000)),
luopl's avatar
luopl committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    )
    tools = [
        {
            "type": "function",
            "function": {
                "name": "calculate_gpa",
                "description": "Calculate the Grade Point Average (GPA) based on grades and credit hours",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "grades": {"type": "array", "items": {"type": "string"}, "description": "The grades"},
                        "hours": {"type": "array", "items": {"type": "integer"}, "description": "The credit hours"},
                    },
                    "required": ["grades", "hours"],
                },
            },
        }
    ]
    tool_map = {"calculate_gpa": calculate_gpa}

    messages = []
    messages.append({"role": "user", "content": "My grades are A, A, B, and C. The credit hours are 3, 4, 3, and 2."})
    result = client.chat.completions.create(messages=messages, model="test", tools=tools)
    if result.choices[0].message.tool_calls is None:
        raise ValueError("Cannot retrieve function call from the response.")

    messages.append(result.choices[0].message)
    tool_call = result.choices[0].message.tool_calls[0].function
    print(tool_call)
    # Function(arguments='{"grades": ["A", "A", "B", "C"], "hours": [3, 4, 3, 2]}', name='calculate_gpa')
    name, arguments = tool_call.name, json.loads(tool_call.arguments)
    tool_result = tool_map[name](**arguments)
    messages.append({"role": "tool", "content": json.dumps({"gpa": tool_result}, ensure_ascii=False)})
    result = client.chat.completions.create(messages=messages, model="test", tools=tools)
    print(result.choices[0].message.content)
    # Based on the grades and credit hours you provided, your Grade Point Average (GPA) is 3.42.


if __name__ == "__main__":
    main()