test_pairwise.py 3.29 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import random
from typing import Dict, List

import pytest
from datasets import load_dataset
from transformers import AutoTokenizer

from llamafactory.extras.constants import IGNORE_INDEX
chenych's avatar
chenych committed
24
from llamafactory.train.test_utils import load_dataset_module
chenych's avatar
chenych committed
25
26


luopl's avatar
luopl committed
27
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
chenych's avatar
chenych committed
28

luopl's avatar
luopl committed
29
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
chenych's avatar
chenych committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

TRAIN_ARGS = {
    "model_name_or_path": TINY_LLAMA,
    "stage": "rm",
    "do_train": True,
    "finetuning_type": "full",
    "dataset": "dpo_en_demo",
    "dataset_dir": "REMOTE:" + DEMO_DATA,
    "template": "llama3",
    "cutoff_len": 8192,
    "output_dir": "dummy_dir",
    "overwrite_output_dir": True,
    "fp16": True,
}


def _convert_sharegpt_to_openai(messages: List[Dict[str, str]]) -> List[Dict[str, str]]:
    role_mapping = {"human": "user", "gpt": "assistant", "system": "system"}
    new_messages = []
    for message in messages:
        new_messages.append({"role": role_mapping[message["from"]], "content": message["value"]})

    return new_messages


@pytest.mark.parametrize("num_samples", [16])
def test_pairwise_data(num_samples: int):
chenych's avatar
chenych committed
57
    train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
chenych's avatar
chenych committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
    original_data = load_dataset(DEMO_DATA, name="dpo_en_demo", split="train")
    indexes = random.choices(range(len(original_data)), k=num_samples)
    for index in indexes:
        chosen_messages = original_data["conversations"][index] + [original_data["chosen"][index]]
        rejected_messages = original_data["conversations"][index] + [original_data["rejected"][index]]
        chosen_messages = _convert_sharegpt_to_openai(chosen_messages)
        rejected_messages = _convert_sharegpt_to_openai(rejected_messages)
        ref_chosen_input_ids = ref_tokenizer.apply_chat_template(chosen_messages)
        chosen_prompt_len = len(ref_tokenizer.apply_chat_template(chosen_messages[:-1], add_generation_prompt=True))
        ref_chosen_labels = [IGNORE_INDEX] * chosen_prompt_len + ref_chosen_input_ids[chosen_prompt_len:]
        ref_rejected_input_ids = ref_tokenizer.apply_chat_template(rejected_messages)
        rejected_prompt_len = len(
            ref_tokenizer.apply_chat_template(rejected_messages[:-1], add_generation_prompt=True)
        )
        ref_rejected_labels = [IGNORE_INDEX] * rejected_prompt_len + ref_rejected_input_ids[rejected_prompt_len:]
        assert train_dataset["chosen_input_ids"][index] == ref_chosen_input_ids
        assert train_dataset["chosen_labels"][index] == ref_chosen_labels
        assert train_dataset["rejected_input_ids"][index] == ref_rejected_input_ids
        assert train_dataset["rejected_labels"][index] == ref_rejected_labels