training_args.py 1.7 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import json
from dataclasses import dataclass, field
from typing import Literal, Optional, Union

from transformers import Seq2SeqTrainingArguments
from transformers.training_args import _convert_str_dict

from ..extras.misc import use_ray


@dataclass
class RayArguments:
    r"""
    Arguments pertaining to the Ray training.
    """

    ray_run_name: Optional[str] = field(
        default=None,
chenych's avatar
chenych committed
19
20
21
22
23
        metadata={"help": "The training results will be saved at `<ray_storage_path>/ray_run_name`."},
    )
    ray_storage_path: str = field(
        default="./saves",
        metadata={"help": "The storage path to save training results to"},
luopl's avatar
luopl committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    )
    ray_num_workers: int = field(
        default=1,
        metadata={"help": "The number of workers for Ray training. Default is 1 worker."},
    )
    resources_per_worker: Union[dict, str] = field(
        default_factory=lambda: {"GPU": 1},
        metadata={"help": "The resources per worker for Ray training. Default is to use 1 GPU per worker."},
    )
    placement_strategy: Literal["SPREAD", "PACK", "STRICT_SPREAD", "STRICT_PACK"] = field(
        default="PACK",
        metadata={"help": "The placement strategy for Ray training. Default is PACK."},
    )

    def __post_init__(self):
        self.use_ray = use_ray()
        if isinstance(self.resources_per_worker, str) and self.resources_per_worker.startswith("{"):
            self.resources_per_worker = _convert_str_dict(json.loads(self.resources_per_worker))


@dataclass
class TrainingArguments(RayArguments, Seq2SeqTrainingArguments):
    r"""
    Arguments pertaining to the trainer.
    """

    def __post_init__(self):
        Seq2SeqTrainingArguments.__post_init__(self)
        RayArguments.__post_init__(self)