base_engine.py 3.1 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
15
16
17
18
19
20
21
22
23
24
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, List, Literal, Optional, Sequence, Union


if TYPE_CHECKING:
    from transformers import PreTrainedModel, PreTrainedTokenizer
    from vllm import AsyncLLMEngine

    from ..data import Template
chenych's avatar
chenych committed
25
    from ..data.mm_plugin import AudioInput, ImageInput, VideoInput
chenych's avatar
chenych committed
26
    from ..extras.constants import EngineName
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
27
28
29
30
31
32
33
34
35
36
37
38
    from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments


@dataclass
class Response:
    response_text: str
    response_length: int
    prompt_length: int
    finish_reason: Literal["stop", "length"]


class BaseEngine(ABC):
luopl's avatar
luopl committed
39
40
41
42
43
44
    r"""
    Base class for inference engine of chat models.

    Must implements async methods: chat(), stream_chat() and get_scores().
    """

chenych's avatar
chenych committed
45
    name: "EngineName"
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
46
47
48
49
50
51
52
53
54
55
56
57
58
    model: Union["PreTrainedModel", "AsyncLLMEngine"]
    tokenizer: "PreTrainedTokenizer"
    can_generate: bool
    template: "Template"
    generating_args: Dict[str, Any]

    @abstractmethod
    def __init__(
        self,
        model_args: "ModelArguments",
        data_args: "DataArguments",
        finetuning_args: "FinetuningArguments",
        generating_args: "GeneratingArguments",
luopl's avatar
luopl committed
59
60
61
62
63
    ) -> None:
        r"""
        Initializes an inference engine.
        """
        ...
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
64
65
66
67
68
69
70

    @abstractmethod
    async def chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
luopl's avatar
luopl committed
71
72
        images: Optional[Sequence["ImageInput"]] = None,
        videos: Optional[Sequence["VideoInput"]] = None,
chenych's avatar
chenych committed
73
        audios: Optional[Sequence["AudioInput"]] = None,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
74
        **input_kwargs,
luopl's avatar
luopl committed
75
76
77
78
79
    ) -> List["Response"]:
        r"""
        Gets a list of responses of the chat model.
        """
        ...
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
80
81
82
83
84
85
86

    @abstractmethod
    async def stream_chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
luopl's avatar
luopl committed
87
88
        images: Optional[Sequence["ImageInput"]] = None,
        videos: Optional[Sequence["VideoInput"]] = None,
chenych's avatar
chenych committed
89
        audios: Optional[Sequence["AudioInput"]] = None,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
90
        **input_kwargs,
luopl's avatar
luopl committed
91
92
93
94
95
    ) -> AsyncGenerator[str, None]:
        r"""
        Gets the response token-by-token of the chat model.
        """
        ...
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
96
97
98
99
100
101

    @abstractmethod
    async def get_scores(
        self,
        batch_input: List[str],
        **input_kwargs,
luopl's avatar
luopl committed
102
103
104
105
106
    ) -> List[float]:
        r"""
        Gets a list of scores of the reward model.
        """
        ...