parser.py 18.8 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
18
import json
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
19
20
import os
import sys
luopl's avatar
luopl committed
21
22
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
23
24
25

import torch
import transformers
luopl's avatar
luopl committed
26
27
import yaml
from transformers import HfArgumentParser
chenych's avatar
chenych committed
28
from transformers.integrations import is_deepspeed_zero3_enabled
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
29
from transformers.trainer_utils import get_last_checkpoint
chenych's avatar
chenych committed
30
from transformers.training_args import ParallelMode
luopl's avatar
luopl committed
31
from transformers.utils import is_torch_bf16_gpu_available, is_torch_npu_available
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
32

luopl's avatar
luopl committed
33
from ..extras import logging
chenych's avatar
chenych committed
34
from ..extras.constants import CHECKPOINT_NAMES
luopl's avatar
luopl committed
35
from ..extras.misc import check_dependencies, check_version, get_current_device
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
36
37
38
39
40
from .data_args import DataArguments
from .evaluation_args import EvaluationArguments
from .finetuning_args import FinetuningArguments
from .generating_args import GeneratingArguments
from .model_args import ModelArguments
luopl's avatar
luopl committed
41
from .training_args import RayArguments, TrainingArguments
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
42
43


luopl's avatar
luopl committed
44
logger = logging.get_logger(__name__)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
45
46
47
48

check_dependencies()


luopl's avatar
luopl committed
49
50
_TRAIN_ARGS = [ModelArguments, DataArguments, TrainingArguments, FinetuningArguments, GeneratingArguments]
_TRAIN_CLS = Tuple[ModelArguments, DataArguments, TrainingArguments, FinetuningArguments, GeneratingArguments]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
51
52
53
54
55
56
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
_INFER_CLS = Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
_EVAL_CLS = Tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]


luopl's avatar
luopl committed
57
def read_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> Union[Dict[str, Any], List[str]]:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
58
    if args is not None:
luopl's avatar
luopl committed
59
        return args
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
60

luopl's avatar
luopl committed
61
    if len(sys.argv) == 2 and (sys.argv[1].endswith(".yaml") or sys.argv[1].endswith(".yml")):
luopl's avatar
luopl committed
62
63
64
65
66
        return yaml.safe_load(Path(sys.argv[1]).absolute().read_text())
    elif len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        return json.loads(Path(sys.argv[1]).absolute().read_text())
    else:
        return sys.argv[1:]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
67
68


luopl's avatar
luopl committed
69
70
71
72
73
74
def _parse_args(
    parser: "HfArgumentParser", args: Optional[Union[Dict[str, Any], List[str]]] = None, allow_extra_keys: bool = False
) -> Tuple[Any]:
    args = read_args(args)
    if isinstance(args, dict):
        return parser.parse_dict(args, allow_extra_keys=allow_extra_keys)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
75

luopl's avatar
luopl committed
76
77
78
    (*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(args=args, return_remaining_strings=True)

    if unknown_args and not allow_extra_keys:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
79
        print(parser.format_help())
luopl's avatar
luopl committed
80
81
        print(f"Got unknown args, potentially deprecated arguments: {unknown_args}")
        raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {unknown_args}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
82
83
84
85

    return (*parsed_args,)


luopl's avatar
luopl committed
86
87
def _set_transformers_logging() -> None:
    transformers.utils.logging.set_verbosity_info()
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
88
89
90
91
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()


chenych's avatar
chenych committed
92
93
94
95
96
def _verify_model_args(
    model_args: "ModelArguments",
    data_args: "DataArguments",
    finetuning_args: "FinetuningArguments",
) -> None:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
97
98
99
100
101
102
103
    if model_args.adapter_name_or_path is not None and finetuning_args.finetuning_type != "lora":
        raise ValueError("Adapter is only valid for the LoRA method.")

    if model_args.quantization_bit is not None:
        if finetuning_args.finetuning_type != "lora":
            raise ValueError("Quantization is only compatible with the LoRA method.")

chenych's avatar
chenych committed
104
105
106
107
108
109
        if finetuning_args.pissa_init:
            raise ValueError("Please use scripts/pissa_init.py to initialize PiSSA for a quantized model.")

        if model_args.resize_vocab:
            raise ValueError("Cannot resize embedding layers of a quantized model.")

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
110
111
112
113
114
115
        if model_args.adapter_name_or_path is not None and finetuning_args.create_new_adapter:
            raise ValueError("Cannot create new adapter upon a quantized model.")

        if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
            raise ValueError("Quantized model only accepts a single adapter. Merge them first.")

chenych's avatar
chenych committed
116
    if data_args.template == "yi" and model_args.use_fast_tokenizer:
luopl's avatar
luopl committed
117
        logger.warning_rank0("We should use slow tokenizer for the Yi models. Change `use_fast_tokenizer` to False.")
chenych's avatar
chenych committed
118
119
        model_args.use_fast_tokenizer = False

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
120
121
122
123

def _check_extra_dependencies(
    model_args: "ModelArguments",
    finetuning_args: "FinetuningArguments",
luopl's avatar
luopl committed
124
    training_args: Optional["TrainingArguments"] = None,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
125
126
) -> None:
    if model_args.use_unsloth:
luopl's avatar
luopl committed
127
        check_version("unsloth", mandatory=True)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
128

luopl's avatar
luopl committed
129
    if model_args.enable_liger_kernel:
luopl's avatar
luopl committed
130
        check_version("liger-kernel", mandatory=True)
luopl's avatar
luopl committed
131

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
132
    if model_args.mixture_of_depths is not None:
luopl's avatar
luopl committed
133
        check_version("mixture-of-depth>=1.1.6", mandatory=True)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
134
135

    if model_args.infer_backend == "vllm":
luopl's avatar
luopl committed
136
137
        check_version("vllm>=0.4.3,<=0.6.5")
        check_version("vllm", mandatory=True)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
138
139

    if finetuning_args.use_galore:
luopl's avatar
luopl committed
140
141
142
143
        check_version("galore_torch", mandatory=True)

    if finetuning_args.use_apollo:
        check_version("apollo_torch", mandatory=True)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
144
145

    if finetuning_args.use_badam:
luopl's avatar
luopl committed
146
        check_version("badam>=1.2.1", mandatory=True)
chenych's avatar
chenych committed
147
148

    if finetuning_args.use_adam_mini:
luopl's avatar
luopl committed
149
        check_version("adam-mini", mandatory=True)
chenych's avatar
chenych committed
150
151

    if finetuning_args.plot_loss:
luopl's avatar
luopl committed
152
        check_version("matplotlib", mandatory=True)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
153
154

    if training_args is not None and training_args.predict_with_generate:
luopl's avatar
luopl committed
155
156
157
        check_version("jieba", mandatory=True)
        check_version("nltk", mandatory=True)
        check_version("rouge_chinese", mandatory=True)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
158
159


luopl's avatar
luopl committed
160
def _parse_train_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> _TRAIN_CLS:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
161
162
163
164
    parser = HfArgumentParser(_TRAIN_ARGS)
    return _parse_args(parser, args)


luopl's avatar
luopl committed
165
def _parse_infer_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> _INFER_CLS:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
166
167
168
169
    parser = HfArgumentParser(_INFER_ARGS)
    return _parse_args(parser, args)


luopl's avatar
luopl committed
170
def _parse_eval_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> _EVAL_CLS:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
171
172
173
174
    parser = HfArgumentParser(_EVAL_ARGS)
    return _parse_args(parser, args)


luopl's avatar
luopl committed
175
176
177
178
179
180
181
def get_ray_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> RayArguments:
    parser = HfArgumentParser(RayArguments)
    (ray_args,) = _parse_args(parser, args, allow_extra_keys=True)
    return ray_args


def get_train_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> _TRAIN_CLS:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
182
183
184
185
186
187
188
189
190
191
    model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)

    # Setup logging
    if training_args.should_log:
        _set_transformers_logging()

    # Check arguments
    if finetuning_args.stage != "pt" and data_args.template is None:
        raise ValueError("Please specify which `template` to use.")

chenych's avatar
chenych committed
192
193
194
195
196
197
198
199
200
    if finetuning_args.stage != "sft":
        if training_args.predict_with_generate:
            raise ValueError("`predict_with_generate` cannot be set as True except SFT.")

        if data_args.neat_packing:
            raise ValueError("`neat_packing` cannot be set as True except SFT.")

        if data_args.train_on_prompt or data_args.mask_history:
            raise ValueError("`train_on_prompt` or `mask_history` cannot be set as True except SFT.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
201
202
203
204
205
206
207

    if finetuning_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate:
        raise ValueError("Please enable `predict_with_generate` to save model predictions.")

    if finetuning_args.stage in ["rm", "ppo"] and training_args.load_best_model_at_end:
        raise ValueError("RM and PPO stages do not support `load_best_model_at_end`.")

chenych's avatar
chenych committed
208
209
210
    if finetuning_args.stage == "ppo":
        if not training_args.do_train:
            raise ValueError("PPO training does not support evaluation, use the SFT stage to evaluate models.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
211

chenych's avatar
chenych committed
212
213
        if model_args.shift_attn:
            raise ValueError("PPO training is incompatible with S^2-Attn.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
214

chenych's avatar
chenych committed
215
216
        if finetuning_args.reward_model_type == "lora" and model_args.use_unsloth:
            raise ValueError("Unsloth does not support lora reward model.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
217

chenych's avatar
chenych committed
218
219
220
221
222
223
224
225
        if training_args.report_to and training_args.report_to[0] not in ["wandb", "tensorboard"]:
            raise ValueError("PPO only accepts wandb or tensorboard logger.")

    if training_args.parallel_mode == ParallelMode.NOT_DISTRIBUTED:
        raise ValueError("Please launch distributed training with `llamafactory-cli` or `torchrun`.")

    if training_args.deepspeed and training_args.parallel_mode != ParallelMode.DISTRIBUTED:
        raise ValueError("Please use `FORCE_TORCHRUN=1` to launch DeepSpeed training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
226
227
228
229

    if training_args.max_steps == -1 and data_args.streaming:
        raise ValueError("Please specify `max_steps` in streaming mode.")

chenych's avatar
chenych committed
230
231
232
233
234
235
236
237
    if training_args.do_train and data_args.dataset is None:
        raise ValueError("Please specify dataset for training.")

    if (training_args.do_eval or training_args.do_predict) and (
        data_args.eval_dataset is None and data_args.val_size < 1e-6
    ):
        raise ValueError("Please specify dataset for evaluation.")

luopl's avatar
luopl committed
238
239
240
241
242
243
    if training_args.predict_with_generate:
        if is_deepspeed_zero3_enabled():
            raise ValueError("`predict_with_generate` is incompatible with DeepSpeed ZeRO-3.")

        if data_args.eval_dataset is None:
            raise ValueError("Cannot use `predict_with_generate` if `eval_dataset` is None.")
chenych's avatar
chenych committed
244

luopl's avatar
luopl committed
245
246
        if finetuning_args.compute_accuracy:
            raise ValueError("Cannot use `predict_with_generate` and `compute_accuracy` together.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
247
248
249
250

    if training_args.do_train and model_args.quantization_device_map == "auto":
        raise ValueError("Cannot use device map for quantized models in training.")

chenych's avatar
chenych committed
251
252
    if finetuning_args.pissa_init and is_deepspeed_zero3_enabled():
        raise ValueError("Please use scripts/pissa_init.py to initialize PiSSA in DeepSpeed ZeRO-3.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
253
254

    if finetuning_args.pure_bf16:
luopl's avatar
luopl committed
255
        if not (is_torch_bf16_gpu_available() or (is_torch_npu_available() and torch.npu.is_bf16_supported())):
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
256
257
            raise ValueError("This device does not support `pure_bf16`.")

chenych's avatar
chenych committed
258
259
        if is_deepspeed_zero3_enabled():
            raise ValueError("`pure_bf16` is incompatible with DeepSpeed ZeRO-3.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
260

luopl's avatar
luopl committed
261
262
263
264
265
266
    if training_args.parallel_mode == ParallelMode.DISTRIBUTED:
        if finetuning_args.use_galore and finetuning_args.galore_layerwise:
            raise ValueError("Distributed training does not support layer-wise GaLore.")

        if finetuning_args.use_apollo and finetuning_args.apollo_layerwise:
            raise ValueError("Distributed training does not support layer-wise APOLLO.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
267

luopl's avatar
luopl committed
268
269
270
271
272
        if finetuning_args.use_badam:
            if finetuning_args.badam_mode == "ratio":
                raise ValueError("Radio-based BAdam does not yet support distributed training, use layer-wise BAdam.")
            elif not is_deepspeed_zero3_enabled():
                raise ValueError("Layer-wise BAdam only supports DeepSpeed ZeRO-3 training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
273

luopl's avatar
luopl committed
274
275
    if training_args.deepspeed is not None and (finetuning_args.use_galore or finetuning_args.use_apollo):
        raise ValueError("GaLore and APOLLO are incompatible with DeepSpeed yet.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
276
277
278
279

    if model_args.infer_backend == "vllm":
        raise ValueError("vLLM backend is only available for API, CLI and Web.")

chenych's avatar
chenych committed
280
281
282
283
    if model_args.use_unsloth and is_deepspeed_zero3_enabled():
        raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.")

    if data_args.neat_packing and not data_args.packing:
luopl's avatar
luopl committed
284
        logger.warning_rank0("`neat_packing` requires `packing` is True. Change `packing` to True.")
chenych's avatar
chenych committed
285
286
287
        data_args.packing = True

    _verify_model_args(model_args, data_args, finetuning_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
288
289
290
291
292
    _check_extra_dependencies(model_args, finetuning_args, training_args)

    if (
        training_args.do_train
        and finetuning_args.finetuning_type == "lora"
chenych's avatar
chenych committed
293
        and model_args.quantization_bit is None
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
294
295
296
        and model_args.resize_vocab
        and finetuning_args.additional_target is None
    ):
luopl's avatar
luopl committed
297
298
299
        logger.warning_rank0(
            "Remember to add embedding layers to `additional_target` to make the added tokens trainable."
        )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
300
301

    if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm):
luopl's avatar
luopl committed
302
        logger.warning_rank0("We recommend enable `upcast_layernorm` in quantized training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
303
304

    if training_args.do_train and (not training_args.fp16) and (not training_args.bf16):
luopl's avatar
luopl committed
305
        logger.warning_rank0("We recommend enable mixed precision training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
306

luopl's avatar
luopl committed
307
308
309
310
311
    if (
        training_args.do_train
        and (finetuning_args.use_galore or finetuning_args.use_apollo)
        and not finetuning_args.pure_bf16
    ):
luopl's avatar
luopl committed
312
        logger.warning_rank0(
luopl's avatar
luopl committed
313
            "Using GaLore or APOLLO with mixed precision training may significantly increases GPU memory usage."
luopl's avatar
luopl committed
314
        )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
315
316

    if (not training_args.do_train) and model_args.quantization_bit is not None:
luopl's avatar
luopl committed
317
        logger.warning_rank0("Evaluating model in 4/8-bit mode may cause lower scores.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
318
319

    if (not training_args.do_train) and finetuning_args.stage == "dpo" and finetuning_args.ref_model is None:
luopl's avatar
luopl committed
320
        logger.warning_rank0("Specify `ref_model` for computing rewards at evaluation.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
321
322
323

    # Post-process training arguments
    if (
chenych's avatar
chenych committed
324
        training_args.parallel_mode == ParallelMode.DISTRIBUTED
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
325
326
327
        and training_args.ddp_find_unused_parameters is None
        and finetuning_args.finetuning_type == "lora"
    ):
luopl's avatar
luopl committed
328
        logger.warning_rank0("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
329
330
331
332
333
        training_args.ddp_find_unused_parameters = False

    if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]:
        can_resume_from_checkpoint = False
        if training_args.resume_from_checkpoint is not None:
luopl's avatar
luopl committed
334
            logger.warning_rank0("Cannot resume from checkpoint in current stage.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
335
336
337
338
339
340
341
342
343
344
345
346
            training_args.resume_from_checkpoint = None
    else:
        can_resume_from_checkpoint = True

    if (
        training_args.resume_from_checkpoint is None
        and training_args.do_train
        and os.path.isdir(training_args.output_dir)
        and not training_args.overwrite_output_dir
        and can_resume_from_checkpoint
    ):
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
chenych's avatar
chenych committed
347
348
349
        if last_checkpoint is None and any(
            os.path.isfile(os.path.join(training_args.output_dir, name)) for name in CHECKPOINT_NAMES
        ):
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
350
351
352
353
            raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.")

        if last_checkpoint is not None:
            training_args.resume_from_checkpoint = last_checkpoint
luopl's avatar
luopl committed
354
355
            logger.info_rank0(f"Resuming training from {training_args.resume_from_checkpoint}.")
            logger.info_rank0("Change `output_dir` or use `overwrite_output_dir` to avoid.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
356
357
358
359
360
361

    if (
        finetuning_args.stage in ["rm", "ppo"]
        and finetuning_args.finetuning_type == "lora"
        and training_args.resume_from_checkpoint is not None
    ):
luopl's avatar
luopl committed
362
        logger.warning_rank0(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
363
364
365
366
367
368
369
370
371
372
373
374
375
            "Add {} to `adapter_name_or_path` to resume training from checkpoint.".format(
                training_args.resume_from_checkpoint
            )
        )

    # Post-process model arguments
    if training_args.bf16 or finetuning_args.pure_bf16:
        model_args.compute_dtype = torch.bfloat16
    elif training_args.fp16:
        model_args.compute_dtype = torch.float16

    model_args.device_map = {"": get_current_device()}
    model_args.model_max_length = data_args.cutoff_len
chenych's avatar
chenych committed
376
    model_args.block_diag_attn = data_args.neat_packing
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
377
378
    data_args.packing = data_args.packing if data_args.packing is not None else finetuning_args.stage == "pt"

chenych's avatar
chenych committed
379
    # Log on each process the small summary
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
380
381
382
383
384
    logger.info(
        "Process rank: {}, device: {}, n_gpu: {}, distributed training: {}, compute dtype: {}".format(
            training_args.local_rank,
            training_args.device,
            training_args.n_gpu,
chenych's avatar
chenych committed
385
            training_args.parallel_mode == ParallelMode.DISTRIBUTED,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
386
387
388
389
390
391
392
393
            str(model_args.compute_dtype),
        )
    )
    transformers.set_seed(training_args.seed)

    return model_args, data_args, training_args, finetuning_args, generating_args


luopl's avatar
luopl committed
394
def get_infer_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> _INFER_CLS:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
395
396
397
398
399
400
401
402
403
404
405
406
    model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args)

    _set_transformers_logging()

    if data_args.template is None:
        raise ValueError("Please specify which `template` to use.")

    if model_args.infer_backend == "vllm":
        if finetuning_args.stage != "sft":
            raise ValueError("vLLM engine only supports auto-regressive models.")

        if model_args.quantization_bit is not None:
chenych's avatar
chenych committed
407
            raise ValueError("vLLM engine does not support bnb quantization (GPTQ and AWQ are supported).")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
408
409
410
411

        if model_args.rope_scaling is not None:
            raise ValueError("vLLM engine does not support RoPE scaling.")

chenych's avatar
chenych committed
412
413
414
415
        if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
            raise ValueError("vLLM only accepts a single adapter. Merge them first.")

    _verify_model_args(model_args, data_args, finetuning_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
416
417
    _check_extra_dependencies(model_args, finetuning_args)

chenych's avatar
chenych committed
418
419
420
    if model_args.export_dir is not None and model_args.export_device == "cpu":
        model_args.device_map = {"": torch.device("cpu")}
        model_args.model_max_length = data_args.cutoff_len
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
421
422
423
424
425
426
    else:
        model_args.device_map = "auto"

    return model_args, data_args, finetuning_args, generating_args


luopl's avatar
luopl committed
427
def get_eval_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> _EVAL_CLS:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
428
429
430
431
432
433
434
435
436
437
    model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args)

    _set_transformers_logging()

    if data_args.template is None:
        raise ValueError("Please specify which `template` to use.")

    if model_args.infer_backend == "vllm":
        raise ValueError("vLLM backend is only available for API, CLI and Web.")

chenych's avatar
chenych committed
438
    _verify_model_args(model_args, data_args, finetuning_args)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
439
440
441
442
443
444
445
    _check_extra_dependencies(model_args, finetuning_args)

    model_args.device_map = "auto"

    transformers.set_seed(eval_args.seed)

    return model_args, data_args, eval_args, finetuning_args