collator.py 10.4 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2024 OpenAccess AI Collective and the LlamaFactory team.
#
# This code is inspired by the OpenAccess AI Collective's axolotl library.
# https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/src/axolotl/monkeypatch/utils.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
luopl's avatar
luopl committed
19
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Sequence
chenych's avatar
chenych committed
20
21

import torch
luopl's avatar
luopl committed
22
import torch.nn.functional as F
chenych's avatar
chenych committed
23
24
from transformers import DataCollatorForSeq2Seq

luopl's avatar
luopl committed
25
26
27
28
29
30
31
from ..extras.constants import IGNORE_INDEX, IMAGE_PLACEHOLDER
from ..extras.packages import is_pillow_available


if is_pillow_available():
    from PIL import Image

chenych's avatar
chenych committed
32

luopl's avatar
luopl committed
33
34
35
36
37
38
if TYPE_CHECKING:
    from transformers import ProcessorMixin

    from .template import Template


chenych's avatar
chenych committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def prepare_4d_attention_mask(attention_mask_with_indices: "torch.Tensor", dtype: "torch.dtype") -> "torch.Tensor":
    r"""
    Expands the attention mask with indices from (batch_size, seq_len) to (batch_size, 1, seq_len, seq_len),
    while handles packed sequences and transforms the mask to lower triangular form to prevent future peeking.

    e.g.
    ```python
    # input
    [[1, 1, 2, 2, 2, 0]]
    # output
    [
        [
            [
                [o, x, x, x, x, x],
                [o, o, x, x, x, x],
                [x, x, o, x, x, x],
                [x, x, o, o, x, x],
                [x, x, o, o, o, x],
                [x, x, x, x, x, x],
            ]
        ]
    ]
    ```
    where `o` equals to `0.0`, `x` equals to `min_dtype`.
    """
    bsz, seq_len = attention_mask_with_indices.size()
    min_dtype = torch.finfo(dtype).min
    expanded_mask = attention_mask_with_indices[:, None, None, :].expand(bsz, 1, seq_len, seq_len)
    # Create a binary mask from the original mask where zeros remain zeros and all other values are set to one
    padding_mask = torch.where(expanded_mask != 0, 1, 0)
    # Create a block-diagonal mask.
    attention_mask_4d = torch.eq(expanded_mask, expanded_mask.transpose(-1, -2)).int() * padding_mask
    # Use the lower triangular mask to zero out the upper triangular part
    attention_mask_4d *= torch.tril(torch.ones((seq_len, seq_len), dtype=torch.long))
    # Invert the attention mask.
    attention_mask_4d = torch.where(attention_mask_4d != 0, torch.tensor(0, dtype=dtype), min_dtype)
    return attention_mask_4d


@dataclass
luopl's avatar
luopl committed
79
80
81
82
class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
    r"""
    Data collator that supports VLMs.

luopl's avatar
luopl committed
83
    Features should contain input_ids, attention_mask, labels, and optionally contain images and videos.
luopl's avatar
luopl committed
84
85
86
87
88
    """

    template: Optional["Template"] = None
    processor: Optional["ProcessorMixin"] = None

luopl's avatar
luopl committed
89
90
91
92
    def __post_init__(self):
        if self.template is None:
            raise ValueError("Template is required for MultiModalDataCollator.")

luopl's avatar
luopl committed
93
    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
luopl's avatar
luopl committed
94
        batch_images, batch_videos, batch_imglens, batch_vidlens, batch_input_ids = [], [], [], [], []
luopl's avatar
luopl committed
95
96
97
98
99
100
101
        for feature in features:
            images = feature.pop("images", None) or []
            videos = feature.pop("videos", None) or []
            batch_images.extend(images)
            batch_videos.extend(videos)
            batch_imglens.append(len(images))
            batch_vidlens.append(len(videos))
luopl's avatar
luopl committed
102
            batch_input_ids.append(feature["input_ids"])
luopl's avatar
luopl committed
103

luopl's avatar
luopl committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        if (
            self.processor is not None and sum(batch_imglens) == 0 and sum(batch_vidlens) == 0
        ):  # avoid process hanging in zero3/fsdp case
            fake_messages = [{"role": "user", "content": IMAGE_PLACEHOLDER}]
            fake_images = [Image.new("RGB", (64, 64), (255, 255, 255))]
            fake_messages = self.template.mm_plugin.process_messages(fake_messages, fake_images, [], self.processor)
            fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False)
            fake_input_ids, _ = self.template.mm_plugin.process_token_ids(
                fake_input_ids, None, fake_images, [], self.tokenizer, self.processor
            )
            if self.tokenizer.padding_side == "right":
                features[0]["input_ids"] = features[0]["input_ids"] + fake_input_ids
                features[0]["attention_mask"] = features[0]["attention_mask"] + [0] * len(fake_input_ids)
                features[0]["labels"] = features[0]["labels"] + [IGNORE_INDEX] * len(fake_input_ids)
            else:
                features[0]["input_ids"] = fake_input_ids + features[0]["input_ids"]
                features[0]["attention_mask"] = [0] * len(fake_input_ids) + features[0]["attention_mask"]
                features[0]["labels"] = [IGNORE_INDEX] * len(fake_input_ids) + features[0]["labels"]

            batch_images = fake_images
            batch_imglens[0] = 1
            batch_input_ids[0] = features[0]["input_ids"]

luopl's avatar
luopl committed
127
        mm_inputs = self.template.mm_plugin.get_mm_inputs(
luopl's avatar
luopl committed
128
            batch_images, batch_videos, batch_imglens, batch_vidlens, batch_input_ids, self.processor
luopl's avatar
luopl committed
129
130
131
132
133
134
135
        )
        if "token_type_ids" in mm_inputs:
            token_type_ids = mm_inputs.pop("token_type_ids")
            for i, feature in enumerate(features):
                feature["token_type_ids"] = token_type_ids[i]

        features: Dict[str, "torch.Tensor"] = super().__call__(features)
luopl's avatar
luopl committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

        if self.model is not None and hasattr(self.model, "get_rope_index"):  # for qwen2vl mrope
            features["position_ids"], features["rope_deltas"] = self.model.get_rope_index(
                input_ids=features["input_ids"],
                image_grid_thw=mm_inputs.get("image_grid_thw", None),
                video_grid_thw=mm_inputs.get("video_grid_thw", None),
                attention_mask=features["attention_mask"],
            )

        if "cross_attention_mask" in mm_inputs:  # for mllama inputs when pad_to_multiple_of is enabled
            cross_attention_mask = mm_inputs.pop("cross_attention_mask")
            seq_len = features["input_ids"].size(1)
            orig_len = cross_attention_mask.size(1)
            mm_inputs["cross_attention_mask"] = F.pad(cross_attention_mask, (0, 0, 0, 0, 0, seq_len - orig_len))

luopl's avatar
luopl committed
151
        features.update(mm_inputs)
luopl's avatar
luopl committed
152
153
154
        if isinstance(features.get("pixel_values"), list):  # for pixtral inputs
            features = features.data  # use default_collate() instead of BatchEncoding.to()

luopl's avatar
luopl committed
155
156
157
158
159
        if "image_bound" in features:  # for minicpmv inputs
            bsz, seq_length = features["input_ids"].shape
            features["position_ids"] = torch.arange(seq_length).long().repeat(bsz, 1)
            return {"data": features, "input_ids": features["input_ids"], "labels": features["labels"]}

luopl's avatar
luopl committed
160
161
162
163
164
        return features


@dataclass
class SFTDataCollatorWith4DAttentionMask(MultiModalDataCollatorForSeq2Seq):
chenych's avatar
chenych committed
165
166
167
168
169
170
171
172
173
174
175
176
177
    r"""
    Data collator for 4d attention mask.
    """

    block_diag_attn: bool = False
    attn_implementation: Literal["eager", "sdpa", "flash_attention_2"] = "eager"
    compute_dtype: "torch.dtype" = torch.float32

    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
        features = super().__call__(features)
        if self.block_diag_attn and self.attn_implementation != "flash_attention_2":
            features["attention_mask"] = prepare_4d_attention_mask(features["attention_mask"], self.compute_dtype)

luopl's avatar
luopl committed
178
179
180
181
        for key, value in features.items():  # cast data dtype for paligemma
            if torch.is_tensor(value) and torch.is_floating_point(value):
                features[key] = value.to(self.compute_dtype)

chenych's avatar
chenych committed
182
183
184
185
        return features


@dataclass
luopl's avatar
luopl committed
186
class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
chenych's avatar
chenych committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    r"""
    Data collator for pairwise data.
    """

    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
        r"""
        Pads batched data to the longest sequence in the batch.

        We generate 2 * n examples where the first n examples represent chosen examples and
        the last n examples represent rejected examples.
        """
        concatenated_features = []
        for key in ("chosen", "rejected"):
            for feature in features:
                target_feature = {
luopl's avatar
luopl committed
202
203
204
                    "input_ids": feature[f"{key}_input_ids"],
                    "attention_mask": feature[f"{key}_attention_mask"],
                    "labels": feature[f"{key}_labels"],
luopl's avatar
luopl committed
205
206
                    "images": feature["images"],
                    "videos": feature["videos"],
chenych's avatar
chenych committed
207
208
209
210
211
212
213
                }
                concatenated_features.append(target_feature)

        return super().__call__(concatenated_features)


@dataclass
luopl's avatar
luopl committed
214
class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
chenych's avatar
chenych committed
215
216
217
218
219
220
221
222
223
224
225
226
227
    r"""
    Data collator for KTO data.
    """

    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
        target_features = []
        kl_features = []
        kto_tags = []
        for feature in features:
            target_feature = {
                "input_ids": feature["input_ids"],
                "attention_mask": feature["attention_mask"],
                "labels": feature["labels"],
luopl's avatar
luopl committed
228
229
                "images": feature["images"],
                "videos": feature["videos"],
chenych's avatar
chenych committed
230
231
232
233
234
            }
            kl_feature = {
                "input_ids": feature["kl_input_ids"],
                "attention_mask": feature["kl_attention_mask"],
                "labels": feature["kl_labels"],
luopl's avatar
luopl committed
235
236
                "images": feature["images"],
                "videos": feature["videos"],
chenych's avatar
chenych committed
237
238
239
240
241
242
243
244
245
246
            }
            target_features.append(target_feature)
            kl_features.append(kl_feature)
            kto_tags.append(feature["kto_tags"])

        batch = super().__call__(target_features)
        kl_batch = super().__call__(kl_features)
        batch["kl_input_ids"] = kl_batch["input_ids"]
        batch["kl_attention_mask"] = kl_batch["attention_mask"]
        batch["kl_labels"] = kl_batch["labels"]
luopl's avatar
luopl committed
247
        if "token_type_ids" in kl_batch:
chenych's avatar
chenych committed
248
249
250
251
            batch["kl_token_type_ids"] = kl_batch["token_type_ids"]

        batch["kto_tags"] = torch.tensor(kto_tags)
        return batch